嵌入式Linux学习:u-boot源码分析(6)--AM335X系列的2014.10版

2019-07-13 08:09发布

题外话

    之前的5篇博文简单介绍了AM335X启动过程中关于SPL阶段的代码,可以看到SPL实际上没干什么活,它主要是初始化了SDRAM,并根据实际情况将MMC或者其他Flash中的uboot镜像一股脑的加载到SDRAM中的低位位置。然后将cpu的指针指向了SDRAM低位在SDRAM低位中执行uboot代码!     这是为了最大化的合理分配SDRAM的内存空间,让uboot可以更好的运行,也给后期linux内核腾出更多的空间,所以必须要将uboot放置到SDRAM的高位再执行。之前的博客中介绍了,很多变量以及代码段都是位置相关的,也就是运行地址在连接的时候就已经确定了,只有将相应的代码放置到特定的位置才可以保证没有错误的运行。所以讲低位的uboot赋值到SDRAM高位以后,必须要做重定位!    所以后续的代码任务就是:     1. 准备一个临时的gd和sp     2. 将SDRAM的高位人为的划分出一部分空间作为uboot区(类似的还有gd区,bd区,malloc区)     3. 然后将原本保存到低位的uboot复制到高位,也就是上述的uboot区     4. 重定位     5.跳到高位的uboot中运行(已经重定位,所以运行没有问题)

汇编部分


    我们再次回到了start.S的reset处,还记得SPL的入口吗,实际上也是在这里,只是SPL和uboot分别是根据不同的条件做的编译,所以其函数定义也会有所不同,我们继续看这么一段汇编的代码: reset: bl save_boot_params /*lowlevel_init.S (archarmcpuarmv7omap-common)*/ /* * disable interrupts (FIQ and IRQ), also set the cpu to SVC32 mode, * except if in HYP mode already */ mrs r0, cpsr and r1, r0, #0x1f @ mask mode bits teq r1, #0x1a @ test for HYP mode bicne r0, r0, #0x1f @ clear all mode bits orrne r0, r0, #0x13 @ set SVC mode orr r0, r0, #0xc0 @ disable FIQ and IRQ msr cpsr,r0 /* * Setup vector: * (OMAP4 spl TEXT_BASE is not 32 byte aligned. * Continue to use ROM code vector only in OMAP4 spl) */ #if !(defined(CONFIG_OMAP44XX) && defined(CONFIG_SPL_BUILD)) /* Set V=0 in CP15 SCTRL register - for VBAR to point to vector */ mrc p15, 0, r0, c1, c0, 0 @ Read CP15 SCTRL Register bic r0, #CR_V @ V = 0 mcr p15, 0, r0, c1, c0, 0 @ Write CP15 SCTRL Register /* Set vector address in CP15 VBAR register */ ldr r0, =_start mcr p15, 0, r0, c12, c0, 0 @Set VBAR #endif /* the mask ROM code should have PLL and others stable */ #ifndef CONFIG_SKIP_LOWLEVEL_INIT/*this branch will only work in SPL*/ bl cpu_init_cp15 /*wlg: find out in this file, we do not explain in detial*/ bl cpu_init_crit /*wlg: find out in this file, please jump*/ #endif bl _main /*wlg: jump to arch/arm/lib/crt0.s*/    没毛病,上面的代码和这个博客(1)中是一样的,至少看起来是一样的,它主要执行了以下功能:     1. bl save_boot_params 这是第一个不同于SPL阶段的代码,之前save_boot_params保存了r0寄存器中的数据到SRAM中,在uboot中,它实际上只是: ENTRY(save_boot_params) bx lr @ back to my caller ENDPROC(save_boot_params) .weak save_boot_params        可以看到,此时的r0早就已经被SPL用了很多次,上次已经不再保存启动信息了,而且这时候启动信息也已经不再重要了,因为我们已经正在执行uboot了,所以上面的代码只是做了简单的返回。     2.  请注意,这个时候CONFIG_SPL_BUILD不再被定义,所以后面的很多条件编译请自觉忽略。关闭了中断,设置了SVC后     3. 这个时候我们会定义CONFIG_SKIP_LOWLEVEL_INIT,所以其后面的cpu_init_cp15等代码实际上不会被执行,而是直接来到了_main, arch/arm/lib/crt0.s
    接下来继续看_main代码,实际上也是和SPL一样的,只是部分条件编译不一样,如下: ENTRY(_main) /* * Set up initial C runtime environment and call board_init_f(0). */ #if defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_STACK) ldr sp, =(CONFIG_SPL_STACK)/* wlg: in spl, it seems be 0x40310000-sizeof(global_data)*/ #else ldr sp, =(CONFIG_SYS_INIT_SP_ADDR)/* wlg: in uboot, it will be ?*/ #endif bic sp, sp, #7 /* 8-byte alignment for ABI compliance | SPL | uboot |*/ mov r2, sp /* wlg: we record the end of address of the initial |sp is useful, r9 (gdata) will |sp is useful, a new temp |*/ sub sp, sp, #GD_SIZE /* allocate one GD above SP |be redefined in board_init_f |GD(pointed by r9) will be |*/ bic sp, sp, #7 /* 8-byte alignment for ABI compliance |so next text is only to clear | set above on sp, gdata |*/ mov r9, sp /* GD is above SP |a invalid memory |be discarded |*/ mov r1, sp /* wlg: we record the start address of the initial*/ mov r0, #0 /*wlg : the num of initialition*/ clr_gd: cmp r1, r2 /* while not at end of GD */ strlo r0, [r1] /* clear 32-bit GD word */ /*wlg: ro >> [r1]*/ addlo r1, r1, #4 /* move to next */ blo clr_gd #if defined(CONFIG_SYS_MALLOC_F_LEN) && !defined(CONFIG_SPL_BUILD) sub sp, sp, #CONFIG_SYS_MALLOC_F_LEN str sp, [r9, #GD_MALLOC_BASE] #endif /* mov r0, #0 not needed due to above code */ bl board_init_f /*wlg: SPL: board_init_f - Function in spl.c (archarmlib) , and it will not return, it will jump to uboot's start's*/ /*wlg: Uboot: board_init_f - Function in Board.c (archarmlib) at line 263 (199 lines), it will return*/    上述代码主要完成了:     1. 设置一个临时的sp,为后面的C语言函数调用做准备     2. 在这个临时的sp上分配出一部分空间专门用来保存全局变量,并把这部分空间清0,并将r9指向这个全局变量!请注意,这里的全局变量已经不同于SPL阶段的gdata(全局变量),这里的全局变量是一个临时的用来保存关键数据的。所以请记住,在uboot的前期所用到的全局变量(会用gd指针表示)实际上指的就是建立在SRAM上的这部分空间,而且已经初始化为0,不再继承SPL阶段的全局变量(SPL阶段的全局变量虽然也是保存在SRAM中,但是是预先定义好的.data中)     3. 定义一个malloc空间,并将malloc空间的地址赋值给最新的临时全局变量(因为r9所指就是全局变量的开头,其加上一个偏移量后就是gd->malloc_base)     4. 万事俱备(有了临时sp和全局变量,为什么说是临时的呢?因为这两个玩意都还建立在SRAM上,而我们cpu目前试运行在SDRAM上的,我们最终希望sp和全局变量都是指向SDRAM的!),那么接下来就可以转跳到从语言函数board_init_f,他的定义位置和SPL不同,在Board.c (archarmlib)

C语言部分

    这部分代码很长,我们分几次将其贴上 void board_init_f(ulong bootflag) { bd_t *bd; init_fnc_t **init_fnc_ptr; gd_t *id; ulong addr, addr_sp; #ifdef CONFIG_PRAM ulong reg; #endif void *new_fdt = NULL; size_t fdt_size = 0; memset((void *)gd, 0, sizeof(gd_t));//DECLARE_GLOBAL_DATA_PTR make gd >> r9, //wlg: all we now used gd is a point which saved in r9, so it is point to SRAM gd->mon_len = (ulong)&__bss_end - (ulong)_start;//wlg: it will be the sum size of uboot, it should be made at ld? #ifdef CONFIG_OF_EMBED /* Get a pointer to the FDT */ gd->fdt_blob = __dtb_dt_begin; #elif defined CONFIG_OF_SEPARATE /* FDT is at end of image */ gd->fdt_blob = &_end; #endif /* Allow the early environment to override the fdt address */ gd->fdt_blob = (void *)getenv_ulong("fdtcontroladdr", 16, (uintptr_t)gd->fdt_blob); //initial function sequence as defined before, containing serial_init() for (init_fnc_ptr = init_sequence; *init_fnc_ptr; ++init_fnc_ptr) { if ((*init_fnc_ptr)() != 0) { hang (); } } #ifdef CONFIG_OF_CONTROL /* For now, put this check after the console is ready */ if (fdtdec_prepare_fdt()) { panic("** CONFIG_OF_CONTROL defined but no FDT - please see " "doc/README.fdt-control"); } #endif debug("monitor len: %08lX ", gd->mon_len); /* * Ram is setup, size stored in gd !! */ debug("ramsize: %08lX ", gd->ram_size);     这部分代码的主要工作是对对全局变量进行赋值,也就是上文gd所指向的建立在SRAM上的临时全局变量;然后利用函数指针进行各种初始化,展示如下: init_fnc_t *init_sequence[] = { arch_cpu_init, /* basic arch cpu dependent setup */ mark_bootstage, #ifdef CONFIG_OF_CONTROL fdtdec_check_fdt, #endif #if defined(CONFIG_BOARD_EARLY_INIT_F) board_early_init_f, #endif timer_init, /* initialize timer */ #ifdef CONFIG_BOARD_POSTCLK_INIT board_postclk_init, #endif #ifdef CONFIG_FSL_ESDHC get_clocks, #endif env_init, /* initialize environment */ init_baudrate, /* initialze baudrate settings */ serial_init, /* serial communications setup */ //wlg: at very first of SPL, we have no serial, so we get the default serial as cerrent console_init_f, /* stage 1 init of console */ //wlg: while in boot, display_banner, /* say that we are here */ //wlg: now we have the first information printed out: U-Boot 2014.10... print_cpuinfo, /* display cpu info (and speed) */ #if defined(CONFIG_DISPLAY_BOARDINFO) checkboard, /* display board info */ #endif #if defined(CONFIG_HARD_I2C) || defined(CONFIG_SYS_I2C) init_func_i2c, #endif dram_init, /* configure available RAM banks */// wlg: make initialing to gd->ram-size NULL, };    将上面的函数指针数组中的元素所指向的函数全部执行一遍,每一个函数都比较简单,其作用在注释中都有所记录。初始化过程也会对上述全局变量gd中元素做修改,初始化过程也大量用到了环境变量,这些默认的环境变量在编译时就已经确定,下次专门开一篇来介绍环境变量! addr = CONFIG_SYS_SDRAM_BASE + get_effective_memsize(); //wlg: now, we could divide the menory to parts as follow #ifdef CONFIG_LOGBUFFER #ifndef CONFIG_ALT_LB_ADDR /* reserve kernel log buffer */ addr -= (LOGBUFF_RESERVE); debug("Reserving %dk for kernel logbuffer at %08lx ", LOGBUFF_LEN, addr); #endif #endif #ifdef CONFIG_PRAM /* * reserve protected RAM */ reg = getenv_ulong("pram", 10, CONFIG_PRAM); addr -= (reg << 10); /* size is in kB */ debug("Reserving %ldk for protected RAM at %08lx ", reg, addr); #endif /* CONFIG_PRAM */ #if !(defined(CONFIG_SYS_ICACHE_OFF) && defined(CONFIG_SYS_DCACHE_OFF)) /* reserve TLB table */ gd->arch.tlb_size = PGTABLE_SIZE;//wlg: tlb will be 64KB addr -= gd->arch.tlb_size; /* round down to next 64 kB limit */ addr &= ~(0x10000 - 1); gd->arch.tlb_addr = addr;//wlg: record the addr in global_data debug("TLB table from %08lx to %08lx ", addr, addr + gd->arch.tlb_size); #endif /* round down to next 4 kB limit */ addr &= ~(4096 - 1); debug("Top of RAM usable for U-Boot at: %08lx ", addr); #ifdef CONFIG_LCD #ifdef CONFIG_FB_ADDR gd->fb_base = CONFIG_FB_ADDR; #else /* reserve memory for LCD display (always full pages) */ addr = lcd_setmem(addr); gd->fb_base = addr; #endif /* CONFIG_FB_ADDR */ #endif /* CONFIG_LCD */ /* * reserve memory for U-Boot code, data & bss * round down to next 4 kB limit */ addr -= gd->mon_len; addr &= ~(4096 - 1); debug("Reserving %ldk for U-Boot at: %08lx ", gd->mon_len >> 10, addr);  ////////////////////////////the different between SPL and uboot /////////////////////////////// #ifndef CONFIG_SPL_BUILD//////////////wlg: in this branch, we put the global_data and board_data into SDRAM /* * reserve memory for malloc() arena */ addr_sp = addr - TOTAL_MALLOC_LEN; debug("Reserving %dk for malloc() at: %08lx ", TOTAL_MALLOC_LEN >> 10, addr_sp); /* * (permanently) allocate a Board Info struct * and a permanent copy of the "global" data */ addr_sp -= sizeof (bd_t); bd = (bd_t *) addr_sp; gd->bd = bd; debug("Reserving %zu Bytes for Board Info at: %08lx ", sizeof (bd_t), addr_sp); #ifdef CONFIG_MACH_TYPE gd->bd->bi_arch_number = CONFIG_MACH_TYPE; /* board id for Linux */ #endif addr_sp -= sizeof (gd_t); id = (gd_t *) addr_sp; debug("Reserving %zu Bytes for Global Data at: %08lx ", sizeof (gd_t), addr_sp); #if defined(CONFIG_OF_SEPARATE) && defined(CONFIG_OF_CONTROL) /* * If the device tree is sitting immediate above our image then we * must relocate it. If it is embedded in the data section, then it * will be relocated with other data. */ if (gd->fdt_blob) { fdt_size = ALIGN(fdt_totalsize(gd->fdt_blob) + 0x1000, 32); addr_sp -= fdt_size; new_fdt = (void *)addr_sp; debug("Reserving %zu Bytes for FDT at: %08lx ", fdt_size, addr_sp); } #endif #ifndef CONFIG_ARM64 /* setup stackpointer for exeptions */ gd->irq_sp = addr_sp; #ifdef CONFIG_USE_IRQ addr_sp -= (CONFIG_STACKSIZE_IRQ+CONFIG_STACKSIZE_FIQ); debug("Reserving %zu Bytes for IRQ stack at: %08lx ", CONFIG_STACKSIZE_IRQ+CONFIG_STACKSIZE_FIQ, addr_sp); #endif /* leave 3 words for abort-stack */ addr_sp -= 12; /* 8-byte alignment for ABI compliance */ addr_sp &= ~0x07; #else /* CONFIG_ARM64 */ /* 16-byte alignment for ABI compliance */ addr_sp &= ~0x0f; #endif /* CONFIG_ARM64 */
 上面的代码完成了SDRAM高位地址的划分,从SDRAM顶上往下依次是:     a. TLB,放置TLB。请注意这里只是划分出这么个空间作为TLB的区域,里面并没有数据!     b.FB LCD,放置frame buffer 缓冲(一般没有)     c. Uboot  .text .data .bss,放置完整的uboot代码段和bss数据。请注意这里只是划分出这么个空间作为uboot的区域,里面并没有数据!     d. malloc 放置molloc空间。请注意这里只是划分出这么个空间作为malloc的区域,里面并没有数据!     e. bd 放置board data 结构体。请注意这里只是划分出这么个空间作为bd的区域,里面并没有数据!     f. gd 放置 global data结构体,这个gd结构体才是真正在后期uboot要用的全局变量。请注意这里只是划分出这么个空间作为gd的区域,里面并没有数据!     g. IRQ stack。请注意这里只是划分出这么个空间作为IRQ的区域,里面并没有数据!     h. sp,这个sp才是后期uboot要用的堆栈。请注意这里只是划分出这么个空间作为sp的区域,里面并没有数据!     请注意,上述代码只是简单的划分了SDRAM的内存区域,比如说uboot区域,实际上当前正在执行的就是uboot程序,只是当前代码目前保存在SDRAM的低位,上述的uboot区是在SDRAM的高端,后期我们会将低位的uboot复制到高位的uboot区,再执行重定位,然后代码就可以安全的在高位执行了!
    在完后看 gd->relocaddr = addr; //wlg: the uboot start here gd->start_addr_sp = addr_sp; //wlg: the stack is here gd->reloc_off = addr - (ulong)&_start; //wlg: record the offset, we will relocation. debug("relocation Offset is: %08lx ", gd->reloc_off); if (new_fdt) { memcpy(new_fdt, gd->fdt_blob, fdt_size); gd->fdt_blob = new_fdt; } memcpy(id, (void *)gd, sizeof(gd_t)); //wlg: copy the temp global_data the the static global_data in SDRAM    划分完SDRAM后,需要将关键参数保存到gd中,此时的gd仍是SRAM中的临时全局变量,最后那一句,就将在SRAM中的全局变量,复制到了处在SDRAM中的全局变量中。也就是说现在的全局变量有两个备份,一个在SRAM中,另一个在SDRAM中!
-------------------------------返回到_main------------------------ ldr sp, [r9, #GD_START_ADDR_SP] /* sp = gd->start_addr_sp */ /*wlg: because r9 point to SRAM and keep gd*/ bic sp, sp, #7 /* 8-byte alignment for ABI compliance */ /*wlg: and also we have a copy in SDRAM*/ ldr r9, [r9, #GD_BD] /* r9 = gd->bd */ /*wlg: we should change r9 to point to SDRAM*/ sub r9, r9, #GD_SIZE /* new GD is below bd */ /*wlg: <<<<reloc_off */ /*wlg: now r9 is point to SDRAM*/ add lr, lr, r0 /*wlg: lr will be the here function which run in SDRAM*/ ldr r0, [r9, #GD_RELOCADDR] /* r0 = gd->relocaddr */ /*wlg: so when we return, the program will run on SDRAM*/ b relocate_code /*the function is locate in relocate.S (archarmlib)*/here:     这段代码在注视中解释的很清晰了,其作用就是:     a. 更新r9,让其指向SDRAM中的全局变量!因为以前面已经完成了SRAM到SDRAM的全局变量复制         i.第一句中的r9还是指向SRAM,其作用就是将SRAM中的全局变量中的start_addr_sp赋值给sp,这样就完成了sp指向SDRAM中正确位置的工作!后做对齐         ii.第三句的r9还是指向SRAM,其作用就是将SRAM中的全局变量中的bd赋值给r9         iii.将此时的r9减去GD_SIZE的(即全局变量的size)后,再赋值给r9,此时的r9已经正确的指向了SDRAM中的全局变量(而且已经将SRAM中的相应数据复制进去)     b. 将此时的here标号的地址赋值给lr,将r0赋值为重定位的偏移地址r0 = gd->reloc_off,将lr加上这个r0,这样就相当于完成了here(lr)的重定位!     c.将r0赋值为gd->relocaddr,这个地址就是在SDRAM中重新分配的uboot的起始地址(这个uboot区域目前还没有数据)     d. 跳到relocate_code进行重定位!注意这里不是用bl,所以实际上没有记录返回地址。前面我们已经将here的重定位地址赋给了lr,所以relocate_code返回的话,就会返回到重定位后的SDRAM中区执行,也就是在上述SDRAM中的uboot段中区执行。
    注意:uboot原本也是运行在SDRAM中,但是从SDRAM的地址分配来看,我们无法提前预知uboot的最佳运行位置。所以uboot的前期都是在SDRAM的低位运行的,而且前期的代码都是位置无关的,所以执行起来没有问题。直到重定位完成以后,才将uboot搬移到SDRAM中的uboot区(人为划分的,实际运行的最佳位置),这个时候开始,uboot才开始复杂的功能!所以接下来的重定位非常的关键。

    可看之前的博客-讲解重定位的那篇