嵌入式驱动之阻塞操作、非阻塞操作

2019-07-13 08:42发布

阻塞
阻塞操作    
是指在执行设备操作时若不能获得资源则挂起进程,直到满足可操作的条件后再进行操作。
被挂起的进程进入休眠状态,被从调度器的运行队列移走,直到等待的条件被满足。

非阻塞操作  
进程在不能进行设备操作时并不挂起,它或者放弃,或者不停地查询,直至可以进行操作为止。

fd = open("...", O_RDWR | O_NONBLOCK); 
比如:想要读取一个按键值,如果一直没有按键按下,程序就一直等待直到有按键按下,这叫阻塞操作。非阻塞操作就是想要读取一个按键值,如果没有按键值可读,就立即返回。 驱动程序: #include #include #include #include #include #include #include #include #include #include #include #include static struct class *fifthdrv_class; static struct class_device *fifthdrv_class_dev; volatile unsigned long *gpfcon; volatile unsigned long *gpfdat; volatile unsigned long *gpgcon; volatile unsigned long *gpgdat; static DECLARE_WAIT_QUEUE_HEAD(button_waitq); /* 中断事件标志, 中断服务程序将它置1,fifth_drv_read将它清0 */ static volatile int ev_press = 0; static struct fasync_struct *button_async; struct pin_desc{ unsigned int pin; unsigned int key_val; }; /* 键值: 按下时, 0x01, 0x02, 0x03, 0x04 */ /* 键值: 松开时, 0x81, 0x82, 0x83, 0x84 */ static unsigned char key_val; struct pin_desc pins_desc[4] = { {S3C2410_GPF0, 0x01}, {S3C2410_GPF2, 0x02}, {S3C2410_GPG3, 0x03}, {S3C2410_GPG11, 0x04}, }; static DECLARE_MUTEX(button_lock); //定义互斥锁 定义信号量 /* * 确定按键值 */ static irqreturn_t buttons_irq(int irq, void *dev_id) { struct pin_desc * pindesc = (struct pin_desc *)dev_id; unsigned int pinval; pinval = s3c2410_gpio_getpin(pindesc->pin); if (pinval) { /* 松开 */ key_val = 0x80 | pindesc->key_val; } else { /* 按下 */ key_val = pindesc->key_val; } ev_press = 1; /* 表示中断发生了 */ wake_up_interruptible(&button_waitq); /* 唤醒休眠的进程 */ kill_fasync (&button_async, SIGIO, POLL_IN); // return IRQ_RETVAL(IRQ_HANDLED); } static int fifth_drv_open(struct inode *inode, struct file *file) { if (file->f_flags & O_NONBLOCK) //非阻塞操作 如果无法获取信号量,就立即返回 { if (down_trylock(&button_lock)) return -EBUSY; } else //阻塞操作 陷入休眠,一直等待 { /* 获取信号量 */ down(&button_lock); //如果无法获取信号量,应用程序就会陷入休眠 } /* 配置GPF0,2为输入引脚 */ /* 配置GPG3,11为输入引脚 */ request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, "S2", &pins_desc[0]); request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, "S3", &pins_desc[1]); request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, "S4", &pins_desc[2]); request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, "S5", &pins_desc[3]); return 0; } ssize_t sixth_drv_read(struct file *file, char __user *buf, size_t size, loff_t *ppos) { if (size != 1) return -EINVAL; if (file->f_flags & O_NONBLOCK) //如果是非阻塞操作 { if (!ev_press) //如果没有按键按下,即ev_press=0,就立即返回 return -EAGAIN; } else //是阻塞操作 { /* 如果没有按键动作, 休眠 */ wait_event_interruptible(button_waitq, ev_press); } /* 如果有按键动作, 返回键值 */ copy_to_user(buf, &key_val, 1); ev_press = 0; return 1; } int fifth_drv_close(struct inode *inode, struct file *file) { free_irq(IRQ_EINT0, &pins_desc[0]); free_irq(IRQ_EINT2, &pins_desc[1]); free_irq(IRQ_EINT11, &pins_desc[2]); free_irq(IRQ_EINT19, &pins_desc[3]); up(&button_lock); //释放信号量 return 0; } static unsigned fifth_drv_poll(struct file *file, poll_table *wait) { unsigned int mask = 0; poll_wait(file, &button_waitq, wait); // 不会立即休眠 if (ev_press) mask |= POLLIN | POLLRDNORM; return mask; } static int fifth_drv_fasync (int fd, struct file *filp, int on) { printk("driver: fifth_drv_fasync "); return fasync_helper (fd, filp, on, &button_async); //初始化&button_async结构体,给此结构体分配内存,此结构体包含了应用进程ID } static struct file_operations sencod_drv_fops = { .owner = THIS_MODULE, /* 这是一个宏,推向编译模块时自动创建的__this_module变量 */ .open = fifth_drv_open, .read = fifth_drv_read, .release = fifth_drv_close, .poll = fifth_drv_poll, .fasync = fifth_drv_fasync, }; int major; static int fifth_drv_init(void) { major = register_chrdev(0, "fifth_drv", &sencod_drv_fops); fifthdrv_class = class_create(THIS_MODULE, "fifth_drv"); fifthdrv_class_dev = class_device_create(fifthdrv_class, NULL, MKDEV(major, 0), NULL, "buttons"); /* /dev/buttons */ gpfcon = (volatile unsigned long *)ioremap(0x56000050, 16); gpfdat = gpfcon + 1; gpgcon = (volatile unsigned long *)ioremap(0x56000060, 16); gpgdat = gpgcon + 1; return 0; } static void fifth_drv_exit(void) { unregister_chrdev(major, "fifth_drv"); class_device_unregister(fifthdrv_class_dev); class_destroy(fifthdrv_class); iounmap(gpfcon); iounmap(gpgcon); return 0; } module_init(fifth_drv_init); module_exit(fifth_drv_exit); MODULE_LICENSE("GPL"); 修改的地方有: 1.83行,在fifth_drv_open()函数里,添加了阻塞与非阻塞的判断。并执行相应程序。 if (file->f_flags & O_NONBLOCK) //非阻塞操作 如果无法获取信号量,就立即返回 { if (down_trylock(&button_lock)) return -EBUSY; } else //阻塞操作 陷入休眠,一直等待 { /* 获取信号量 */ down(&button_lock); //如果无法获取信号量,应用程序就会陷入休眠 }阻塞方式还是非阻塞方式,是由应用程序传入的。 2.109行,在sixth_drv_read()函数里,添加了阻塞与非阻塞的判断。 if (file->f_flags & O_NONBLOCK) //如果是非阻塞操作 { if (!ev_press) //如果没有按键按下,即ev_press=0,就立即返回 return -EAGAIN; } else //是阻塞操作 { /* 如果没有按键动作, 休眠 */ wait_event_interruptible(button_waitq, ev_press); }
以阻塞方式打开的测试程序: #include #include #include #include #include #include #include #include #include /* sixthdrvtest */ int fd; void my_signal_fun(int signum) { unsigned char key_val; read(fd, &key_val, 1); printf("key_val: 0x%x ", key_val); } int main(int argc, char **argv) { unsigned char key_val; int ret; int Oflags; // fd = open("/dev/buttons", O_RDWR | O_NONBLOCK); //非阻塞的方式 fd = open("/dev/buttons", O_RDWR); //阻塞的方式 if (fd < 0) { printf("can't open! "); return -1; } while (1) { ret = read(fd, &key_val, 1); printf("key_val: 0x%x, ret = %d ", key_val, ret); // sleep(5); } return 0; } 主函数里死循环ret = read(fd, &key_val, 1),对应到驱动程序里sixth_drv_read(),当没有按键按下时,会在 /* 如果没有按键动作, 休眠 */ wait_event_interruptible(button_waitq, ev_press);这里陷入休眠,然后有按键按下,调用中断服务函数,修改ev_press = 1;唤醒休眠状态,接着执行后面的程序: /* 如果有按键动作, 返回键值 */ copy_to_user(buf, &key_val, 1); ev_press = 0; return 1;回到主函数,打印key_val的值。
以非阻塞方式打开的测试程序: #include #include #include #include #include #include #include #include #include /* sixthdrvtest */ int fd; void my_signal_fun(int signum) { unsigned char key_val; read(fd, &key_val, 1); printf("key_val: 0x%x ", key_val); } int main(int argc, char **argv) { unsigned char key_val; int ret; int Oflags; // fd = open("/dev/buttons", O_RDWR); //阻塞的方式 fd = open("/dev/buttons", O_RDWR | O_NONBLOCK); //非阻塞的方式 if (fd < 0) { printf("can't open! "); return -1; } while (1) { ret = read(fd, &key_val, 1); printf("key_val: 0x%x, ret = %d ", key_val, ret); sleep(5); //延时5s } return 0; }
终端会每5秒输出一次。