阻塞
阻塞操作
是指在执行设备操作时若不能获得资源则挂起进程,直到满足可操作的条件后再进行操作。
被挂起的进程进入休眠状态,被从调度器的运行队列移走,直到等待的条件被满足。
非阻塞操作
进程在不能进行设备操作时并不挂起,它或者放弃,或者不停地查询,直至可以进行操作为止。
fd = open("...", O_RDWR | O_NONBLOCK);
比如:想要读取一个按键值,如果一直没有按键按下,程序就一直等待直到有按键按下,这叫阻塞操作。非阻塞操作就是想要读取一个按键值,如果没有按键值可读,就立即返回。
驱动程序:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
static struct class *fifthdrv_class;
static struct class_device *fifthdrv_class_dev;
volatile unsigned long *gpfcon;
volatile unsigned long *gpfdat;
volatile unsigned long *gpgcon;
volatile unsigned long *gpgdat;
static DECLARE_WAIT_QUEUE_HEAD(button_waitq);
/* 中断事件标志, 中断服务程序将它置1,fifth_drv_read将它清0 */
static volatile int ev_press = 0;
static struct fasync_struct *button_async;
struct pin_desc{
unsigned int pin;
unsigned int key_val;
};
/* 键值: 按下时, 0x01, 0x02, 0x03, 0x04 */
/* 键值: 松开时, 0x81, 0x82, 0x83, 0x84 */
static unsigned char key_val;
struct pin_desc pins_desc[4] = {
{S3C2410_GPF0, 0x01},
{S3C2410_GPF2, 0x02},
{S3C2410_GPG3, 0x03},
{S3C2410_GPG11, 0x04},
};
static DECLARE_MUTEX(button_lock); //定义互斥锁 定义信号量
/*
* 确定按键值
*/
static irqreturn_t buttons_irq(int irq, void *dev_id)
{
struct pin_desc * pindesc = (struct pin_desc *)dev_id;
unsigned int pinval;
pinval = s3c2410_gpio_getpin(pindesc->pin);
if (pinval)
{
/* 松开 */
key_val = 0x80 | pindesc->key_val;
}
else
{
/* 按下 */
key_val = pindesc->key_val;
}
ev_press = 1; /* 表示中断发生了 */
wake_up_interruptible(&button_waitq); /* 唤醒休眠的进程 */
kill_fasync (&button_async, SIGIO, POLL_IN); //
return IRQ_RETVAL(IRQ_HANDLED);
}
static int fifth_drv_open(struct inode *inode, struct file *file)
{
if (file->f_flags & O_NONBLOCK) //非阻塞操作 如果无法获取信号量,就立即返回
{
if (down_trylock(&button_lock))
return -EBUSY;
}
else //阻塞操作 陷入休眠,一直等待
{
/* 获取信号量 */
down(&button_lock); //如果无法获取信号量,应用程序就会陷入休眠
}
/* 配置GPF0,2为输入引脚 */
/* 配置GPG3,11为输入引脚 */
request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, "S2", &pins_desc[0]);
request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, "S3", &pins_desc[1]);
request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, "S4", &pins_desc[2]);
request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, "S5", &pins_desc[3]);
return 0;
}
ssize_t sixth_drv_read(struct file *file, char __user *buf, size_t size, loff_t *ppos)
{
if (size != 1)
return -EINVAL;
if (file->f_flags & O_NONBLOCK) //如果是非阻塞操作
{
if (!ev_press) //如果没有按键按下,即ev_press=0,就立即返回
return -EAGAIN;
}
else //是阻塞操作
{
/* 如果没有按键动作, 休眠 */
wait_event_interruptible(button_waitq, ev_press);
}
/* 如果有按键动作, 返回键值 */
copy_to_user(buf, &key_val, 1);
ev_press = 0;
return 1;
}
int fifth_drv_close(struct inode *inode, struct file *file)
{
free_irq(IRQ_EINT0, &pins_desc[0]);
free_irq(IRQ_EINT2, &pins_desc[1]);
free_irq(IRQ_EINT11, &pins_desc[2]);
free_irq(IRQ_EINT19, &pins_desc[3]);
up(&button_lock); //释放信号量
return 0;
}
static unsigned fifth_drv_poll(struct file *file, poll_table *wait)
{
unsigned int mask = 0;
poll_wait(file, &button_waitq, wait); // 不会立即休眠
if (ev_press)
mask |= POLLIN | POLLRDNORM;
return mask;
}
static int fifth_drv_fasync (int fd, struct file *filp, int on)
{
printk("driver: fifth_drv_fasync
");
return fasync_helper (fd, filp, on, &button_async); //初始化&button_async结构体,给此结构体分配内存,此结构体包含了应用进程ID
}
static struct file_operations sencod_drv_fops = {
.owner = THIS_MODULE, /* 这是一个宏,推向编译模块时自动创建的__this_module变量 */
.open = fifth_drv_open,
.read = fifth_drv_read,
.release = fifth_drv_close,
.poll = fifth_drv_poll,
.fasync = fifth_drv_fasync,
};
int major;
static int fifth_drv_init(void)
{
major = register_chrdev(0, "fifth_drv", &sencod_drv_fops);
fifthdrv_class = class_create(THIS_MODULE, "fifth_drv");
fifthdrv_class_dev = class_device_create(fifthdrv_class, NULL, MKDEV(major, 0), NULL, "buttons"); /* /dev/buttons */
gpfcon = (volatile unsigned long *)ioremap(0x56000050, 16);
gpfdat = gpfcon + 1;
gpgcon = (volatile unsigned long *)ioremap(0x56000060, 16);
gpgdat = gpgcon + 1;
return 0;
}
static void fifth_drv_exit(void)
{
unregister_chrdev(major, "fifth_drv");
class_device_unregister(fifthdrv_class_dev);
class_destroy(fifthdrv_class);
iounmap(gpfcon);
iounmap(gpgcon);
return 0;
}
module_init(fifth_drv_init);
module_exit(fifth_drv_exit);
MODULE_LICENSE("GPL");
修改的地方有:
1.83行,在fifth_drv_open()函数里,添加了阻塞与非阻塞的判断。并执行相应程序。
if (file->f_flags & O_NONBLOCK) //非阻塞操作 如果无法获取信号量,就立即返回
{
if (down_trylock(&button_lock))
return -EBUSY;
}
else //阻塞操作 陷入休眠,一直等待
{
/* 获取信号量 */
down(&button_lock); //如果无法获取信号量,应用程序就会陷入休眠
}
阻塞方式还是非阻塞方式,是由应用程序传入的。
2.109行,在sixth_drv_read()函数里,添加了阻塞与非阻塞的判断。
if (file->f_flags & O_NONBLOCK) //如果是非阻塞操作
{
if (!ev_press) //如果没有按键按下,即ev_press=0,就立即返回
return -EAGAIN;
}
else //是阻塞操作
{
/* 如果没有按键动作, 休眠 */
wait_event_interruptible(button_waitq, ev_press);
}
以阻塞方式打开的测试程序:
#include
#include
#include
#include
#include
#include
#include
#include
#include
/* sixthdrvtest
*/
int fd;
void my_signal_fun(int signum)
{
unsigned char key_val;
read(fd, &key_val, 1);
printf("key_val: 0x%x
", key_val);
}
int main(int argc, char **argv)
{
unsigned char key_val;
int ret;
int Oflags;
// fd = open("/dev/buttons", O_RDWR | O_NONBLOCK); //非阻塞的方式
fd = open("/dev/buttons", O_RDWR); //阻塞的方式
if (fd < 0)
{
printf("can't open!
");
return -1;
}
while (1)
{
ret = read(fd, &key_val, 1);
printf("key_val: 0x%x, ret = %d
", key_val, ret);
// sleep(5);
}
return 0;
}
主函数里死循环ret = read(fd, &key_val, 1),对应到驱动程序里sixth_drv_read(),当没有按键按下时,会在
/* 如果没有按键动作, 休眠 */
wait_event_interruptible(button_waitq, ev_press);
这里陷入休眠,然后有按键按下,调用中断服务函数,修改ev_press = 1;唤醒休眠状态,接着执行后面的程序:
/* 如果有按键动作, 返回键值 */
copy_to_user(buf, &key_val, 1);
ev_press = 0;
return 1;
回到主函数,打印key_val的值。
以非阻塞方式打开的测试程序:
#include
#include
#include
#include
#include
#include
#include
#include
#include
/* sixthdrvtest
*/
int fd;
void my_signal_fun(int signum)
{
unsigned char key_val;
read(fd, &key_val, 1);
printf("key_val: 0x%x
", key_val);
}
int main(int argc, char **argv)
{
unsigned char key_val;
int ret;
int Oflags;
// fd = open("/dev/buttons", O_RDWR); //阻塞的方式
fd = open("/dev/buttons", O_RDWR | O_NONBLOCK); //非阻塞的方式
if (fd < 0)
{
printf("can't open!
");
return -1;
}
while (1)
{
ret = read(fd, &key_val, 1);
printf("key_val: 0x%x, ret = %d
", key_val, ret);
sleep(5); //延时5s
}
return 0;
}
终端会每5秒输出一次。