DSP

DSP架构介绍

2019-07-13 09:34发布

概述

最近两年,DSP处理器的更高性能由于不能从传统结构中得到解决,因此提出了各种提高性能的策略。其中提高时钟频率似乎是有限的,最好的方法是提高并行性。提高操作并行性,可以由两个途径实现:提高每条指令执行的操作的数量,或者是提高每个指令周期中执行的指令的数量。这两种并行要求产生了多种DSPs新结构。

增强型 DSP

以前,DSP处理器使用复杂的、混合的指令集,使编程者可以把多个操作编码在一条指令中。传统上DSP处理器在一条指令周期只发射并执行一条指令。这种单流、复杂指令的方法使得DSP处理器获得很强大的性能而无需大量的内存。 在保持DSP结构和上述指令集不变的情况下,要提高每个指令的工作量,其中的一个办法是用额外的执行单元和增加数据通路。例如,一些高端的DSP有两个乘法器,而不是一个。我们把使用这种方法的DSP叫做撛銮啃统9妫模樱袛,因为它们的结构与前一代的DSP相似,但性能在增加执行单元后大大增强了。当然,指令集必须也同时增强,这样编程者才能在一条指令中指定更多的并行操作,以利用额外的硬件。增强型DSPs的例子有朗讯公司的DSP16000,ADI的ADSP2116x。增强型DSPs的优点是兼容性好,而且与较早的DSP具有相似的成本和功耗。缺点是结构复杂、指令复杂,进一步发展有限。

VLIW 结构

如前所述,传统上的DSP处理器使用复杂的混合指令,并在一条指令循环中只流出和执行一条指令。然而,最近有些DSP采用一种更RISC化的指令集,并且在一条指令周期执行多条指令,使用大的统一的寄存器堆。例如,Siemems的Carmel、Philips的TriMedia和TI的TMS320C62XX处理器族都使用了超长指令字(VLIW)结构。C62xx处理器每次取一个256位的指令包,把包解析为8个32位的指令,然后把它们引到其8个独立的执行单元。在最好的情况下,C62xx同时执行8个指令枣这种情况下达到了极高的MIPS率(如1600MIPS)。VLIW结构的优点是高性能、结构规整(潜在的易编程和好的目标编译系统)。缺点是高功耗、代码膨胀-需要宽的程序存储器、新的编程/编译困难(需跟踪指令安排,易破坏流水线使性能下降)。

超标量体

超标量体系结构 象VLIW处理器一样,超标量体系结构并行地流出和执行多个指令。但跟VLIW处理器不同的是,超标量体系结构不清楚指定需要并行处理的指令,而是使用动态指令规划,根据处理器可用的资源,数据依赖性和其他的因素来决定哪些指令要被同时执行。超标量体系结构已经长期用于高性能的通用处理器中,如Pentium和PowerPC。最近,ZSP公司开发出第一个商业的超标量体系结构的DSP ZSP164xx。超标量结构的优点是性能有大的跨越、结构规整、代码宽度没有明显增长。缺点是非常高的功耗、指令的动态安排使代码优化困难。

SIMD

结构 单指令多数据流(SIMD)处理器把输入的长的数据分解为多个较短的数据,然后由单指令并行地操作,从而提高处理海量、可分解数据的能力。该技术能大幅度地提高在多媒体信号处理中大量使用的一些矢量操作的计算速度,如坐标变换和旋转。 通用处理器SIMD增强的两个例子是Pentium的MMX扩展和PowerPC族的AltiVec扩展。simd在一些高性能的DSP处理器中也有应用。例如,DSP16000在其数据路中支持有限的SIMD风格的操作,而Analog Devices最近推出了有名的SHARC的新一代DSP处理器,进行了SIMD能力的扩展。SIMD结构由于使总线、数据通道等资源充分使用,并无需改变信号处理(含图象、语音)算法的基本结构,因此SIMD结构使用越来越普遍。SIMD结构遇到的问题是算法、数据结构必须满足数据并行处理的要求,为了加速,循环常常需要被拆开,处理数据需要重新安排调整。通常SIMD仅支持定点运算。

混合结构

DSP/微控制器的混合结构 许多的应用需要以控制为主的软件和DSP软件的混合。一个明显的例子是数字蜂窝电话,因为其中有监控和语音处理的工作。一般地,微处理器在控制上能提供良好的性能而在DSP性能上则很糟,专用的DSP处理器的特性则刚好相反。因此,最近有一些微处理器产商开始提供DSP增强版本的微处理器。用单处理器完成两种软件的任务是很有吸引力的,因为其可以潜在地提供简化设计,节省版面空间,降低总功耗,降低系统成本等。DSP和微处理器结合的方法有: ·在一个结上集成多种处理器,如MotorolaDSP5665x ·DSP作为协处理器,如ARMPiccolo ·DSP核移值到已有的位处理器,如SH-DSP ·微控制器与已有的DSP集成在一起,如TMS320C27xx ·全部新的设计,如TriCore 随着对DSP能力需求的提高,DSP处理器结构正在进行新的和革新的设计,DSP、MCU、CPU的结构优点相互借用。

文章参考:http://baike.baidu.com/view/529231.htm#4

热门文章