概述
ANC,英文名称:Active Noise Control,主动降噪。其原理是降噪系统电路产生降噪MIC接收的外界环境噪音相等的反相信号,将噪声抵消。
核心算法
ANC降噪实现核心算法为:FxLMS(最小均方差算法)。最小均方差算法以均方误差为代价函数,并使误差降到最小的算法。 具体算法推导这里不做具体介绍,这里直接列出表达式:
其中, x(k)为输入信号矩阵,
W(k)为调整权值矩阵,d(k)为目标(理想)输出信号矩阵,y(k)为实际输出信号矩阵,e(k)为误差信号矩阵,第3个公式为权值调整公式,mu为收敛因子(值为随机的,0
Matlab仿真LMS滤波器根据表达式设计滤波器
function [yn,W,en]=LMS(xn,dn,M,mu,itr)
% LMS(Least Mean Squre)算法
% 输入参数:
% xn 输入的信号序列 (列向量)
% dn 所期望的响应序列 (列向量)
% M 滤波器的阶数 (标量) 滤波器的阶数,就是指过滤谐波的次数,其阶数越高,滤波效果就越好
% mu 收敛因子(步长) (标量) 要求大于0,小于xn的相关矩阵最大特征值的倒数
% itr 迭代次数 (标量) 默认为xn的长度,Mlength(xn) || itr调用LMS函数仿真close all
% 正弦信号的产生
t=0:199;
xs=5*sin(0.3*t);
figure;
subplot(2,1,1);
plot(t,xs);grid;
ylabel('幅值');
title('{输入正弦波信号}');
% 随机噪声信号的产生
randn('state',sum(100*clock));
xn=randn(1,200);
zn=randn(1,200);
xn=xn+zn;
subplot(2,1,2);
plot(t,xn);grid;
ylabel('幅值');
xlabel('时间');
title('{输入随机噪声信号}');
% 信号滤波
xn = xs+xn;
xn = xn.' ; % 输入信号序列
dn = xs.' ; % 预期理想结果序列
M = 23 ; % 滤波器的阶数
rho_max = max(eig(xn*xn.')); % 输入信号相关矩阵的最大特征值
mu = rand()*(1/rho_max) ; % 收敛因子 0 < mu < 1/rho_max
[yn,W,en] = LMS(xn,dn,M,mu);
% 绘制滤波器输入信号
figure;
subplot(2,1,1);
plot(t,xn);grid;
ylabel('幅值');
xlabel('时间');
title('{滤波器输入信号}');
% 绘制自适应滤波器输出信号
subplot(2,1,2);
plot(t,yn);grid;
ylabel('幅值');
xlabel('时间');
title('{自适应滤波器输出信号}');
% 绘制自适应滤波器输出信号,预期输出信号和两者的误差
figure
plot(t,yn,'b',t,dn,'g',t,dn-yn,'r',t,xn,'m');grid;
legend('自适应滤波器输出','预期输出','误差','自适应滤波器输入');
ylabel('幅值');
xlabel('时间');
title('{自适应滤波器}');
%绘制最优权值点
figure
mm=0:M-1;
plot(mm,W(:,end)','m*');grid;
title('{最优权值点}');
实验效果图
结果分析 输入信号为正弦信号加噪声的混合信号,可见正弦信号受噪声影响失真较大;实验输出信号失真较小,噪声信号已经很小,这里可以调节M滤波器阶数来调节ANC降噪效果。可见,LMS算法可实现ANC降噪功能。实际应用分析
实际应用中,ANC降噪对2KHZ以下的信号噪声降噪效果比较好,对高频噪声降噪效果很差。原因为高频信号波长短,对相位偏差也比较敏感,导致ANC对高频噪声降噪效果差。一般高频噪声可以被耳机物理的遮蔽屏蔽掉,这种降噪被称为被动降噪。 总结,一般2KHz噪声信号使用ANC,高频信号没有必要使用ANC。实际测试中的应用,测试步骤:1.关闭ANC时,声学测试软件测试声学参数FR;2.打开ANC时,声学测试软件测试声学参数FR,这里通过调节gain值,来调节降噪效果,使降噪效果适中。因为降噪效果差,达不到降噪的目的;降噪效果如果太好,噪声信号趋近于0,会使耳机产生自激。 通过书籍资料及网上资源学习,以上就是我对ANC的理解,如有什么不妥之处,还请指正。