点击打开链接1. 音频框图概述
<------------> <--------->
<------------> <--------->
<------------> <--------->
<------------> <--------->
<--------->
<--------->
- Front End PCMs:音频前端,一个前端对应着一个 PCM 设备
- Back End DAIs:音频后端,一个后端对应着一个 DAI 接口,一个 FE PCM 能够连接到一个或多个 BE DAI
- Audio Device:有 headset、speaker、earpiece、mic、bt、modem 等;不同的设备可能与不同的 DAI 接口连接,也可能与同一个 DAI 接口连接(如上图,Speaker 和 Earpiece 都连接到 DAI1)
- Soc DSP:本文范围内实现路由功能:连接 FE PCMs 和 BE DAIs,例如连接 PCM0 与 DAI1:
<> <++ <--------->
<------------> ++> <>
<------------> <--------->
<------------> <--------->
<--------->
<--------->
高通 MSM8996 音频框图:
- FE PCMs:
- deep_buffer
- low_latency
- mutil_channel
- compress_offload
- audio_record
- usb_audio
- a2dp_audio
- voice_call
- BE DAIs:
- SLIM_BUS
- Aux_PCM
- Primary_MI2S
- Secondary_MI2S
- Tertiary_MI2S
- Quatermary_MI2S
2. HAL 中的 usecase 和 device
usecase 通俗表示音频场景,对应着音频前端,比如:
- low_latency:按键音、触摸音、游戏背景音等低延时的放音场景
- deep_buffer:音乐、视频等对时延要求不高的放音场景
- compress_offload:mp3、flac、aac等格式的音源播放场景,这种音源不需要软件解码,直接把数据送到硬件解码器(aDSP),由硬件解码器(aDSP)进行解码
- record:普通录音场景
- record_low_latency:低延时的录音场景
- voice_call:语音通话场景
- voip_call:网络通话场景
enum {
USECASE_INVALID = -1,
USECASE_AUDIO_PLAYBACK_DEEP_BUFFER = 0,
USECASE_AUDIO_PLAYBACK_LOW_LATENCY,
USECASE_AUDIO_PLAYBACK_MULTI_CH,
USECASE_AUDIO_PLAYBACK_OFFLOAD,
USECASE_AUDIO_PLAYBACK_ULL,
USECASE_AUDIO_PLAYBACK_FM,
USECASE_AUDIO_HFP_SCO,
USECASE_AUDIO_HFP_SCO_WB,
USECASE_AUDIO_RECORD,
USECASE_AUDIO_RECORD_COMPRESS,
USECASE_AUDIO_RECORD_LOW_LATENCY,
USECASE_AUDIO_RECORD_FM_VIRTUAL,
USECASE_VOICE_CALL,
USECASE_VOICE2_CALL,
USECASE_VOLTE_CALL,
USECASE_QCHAT_CALL,
USECASE_VOWLAN_CALL,
USECASE_VOICEMMODE1_CALL,
USECASE_VOICEMMODE2_CALL,
USECASE_COMPRESS_VOIP_CALL,
USECASE_INCALL_REC_UPLINK,
USECASE_INCALL_REC_DOWNLINK,
USECASE_INCALL_REC_UPLINK_AND_DOWNLINK,
USECASE_AUDIO_PLAYBACK_AFE_PROXY,
USECASE_AUDIO_RECORD_AFE_PROXY,
USECASE_AUDIO_PLAYBACK_EXT_DISP_SILENCE,
AUDIO_USECASE_MAX
};
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
device 表示音频端点设备,包括输出端点(如 speaker、headphone、earpiece)和输入端点(如 headset-mic、builtin-mic)。高通 HAL 对音频设备做了扩展,比如 speaker 分为:
- SND_DEVICE_OUT_SPEAKER:普通的外放设备
- SND_DEVICE_OUT_SPEAKER_PROTECTED:带保护的外放设备
- SND_DEVICE_OUT_VOICE_SPEAKER:普通的通话免提设备
- SND_DEVICE_OUT_VOICE_SPEAKER_PROTECTED:带保护的通话免提设备
类似还有很多,详见 platform.h 音频设备定义,下面仅列举一部分:
enum {
SND_DEVICE_NONE = 0,
SND_DEVICE_MIN,
SND_DEVICE_OUT_BEGIN = SND_DEVICE_MIN,
SND_DEVICE_OUT_HANDSET = SND_DEVICE_OUT_BEGIN,
SND_DEVICE_OUT_SPEAKER,
SND_DEVICE_OUT_HEADPHONES,
SND_DEVICE_OUT_HEADPHONES_DSD,
SND_DEVICE_OUT_SPEAKER_AND_HEADPHONES,
SND_DEVICE_OUT_SPEAKER_AND_LINE,
SND_DEVICE_OUT_VOICE_HANDSET,
SND_DEVICE_OUT_VOICE_SPEAKER,
SND_DEVICE_OUT_VOICE_HEADPHONES,
SND_DEVICE_OUT_VOICE_LINE,
SND_DEVICE_OUT_HDMI,
SND_DEVICE_OUT_DISPLAY_PORT,
SND_DEVICE_OUT_BT_SCO,
SND_DEVICE_OUT_BT_A2DP,
SND_DEVICE_OUT_SPEAKER_AND_BT_A2DP,
SND_DEVICE_OUT_AFE_PROXY,
SND_DEVICE_OUT_USB_HEADSET,
SND_DEVICE_OUT_USB_HEADPHONES,
SND_DEVICE_OUT_SPEAKER_AND_USB_HEADSET,
SND_DEVICE_OUT_SPEAKER_PROTECTED,
SND_DEVICE_OUT_VOICE_SPEAKER_PROTECTED,
SND_DEVICE_OUT_END,
SND_DEVICE_IN_BEGIN = SND_DEVICE_OUT_END,
SND_DEVICE_IN_HANDSET_MIC = SND_DEVICE_IN_BEGIN,
SND_DEVICE_IN_SPEAKER_MIC,
SND_DEVICE_IN_HEADSET_MIC,
SND_DEVICE_IN_VOICE_SPEAKER_MIC,
SND_DEVICE_IN_VOICE_HEADSET_MIC,
SND_DEVICE_IN_BT_SCO_MIC,
SND_DEVICE_IN_CAMCORDER_MIC,
SND_DEVICE_IN_END,
SND_DEVICE_MAX = SND_DEVICE_IN_END,
};
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
扩展这么多是为了方便设置 acdb id,比如外放和通话免提虽然都用了同样的喇叭设备,但是这两种情景会使用不同的算法,因此需要设置不同的 acdb id 到 aDSP,区分 SND_DEVICE_OUT_SPEAKER 和 SND_DEVICE_OUT_VOICE_SPEAKER 是为了匹配到各自的 acdb id。由于高通 HAL 定义的音频设备与 Android Framework 定义的不一致,所以在高通 HAL 中会根据音频场景对框架层传入的音频设备进行转换,详见:
- platform_get_output_snd_device()
- platform_get_input_snd_device()
在高通 HAL 中,我们只看到 usecase(即 FE PCM)和 device,那么上一个节中提到的 BE DAI 为什么没有被提及?很简单,device 和 BE DAI 是“多对一”的关系,device 连接着唯一的 BE DAI(反过来就不成立了,BE DAI 可能连接着多个 device),所以确定了 device 也就能确定所连接的 BE DAI。
3. 音频通路连接
简单描述下高通 HAL 层音频通路的连接流程。如
音频框图概述
所示,音频通路分为三大块:FE PCMs、BE DAIs、Devices,这三块均需要打开并串联起来才能完成一个音频通路的设置。
FE_PCMs <=> BE_DAIs <=> Devices
3.1. 打开 FE PCM
FE PCMs 是在音频流打开时设置的,我们首先要了解一个音频流对应着一个 usecase,具体细节请参考:
Android 音频系统:从 AudioTrack 到 AudioFlingerAudioTrack、AudioFlinger Threads、AudioHAL Usecases、AudioDriver PCMs 的关系如下图所示:
start_output_stream() 代码分析:
int platform_get_pcm_device_id(audio_usecase_t usecase, int device_type)
{
int device_id = -1;
if (device_type == PCM_PLAYBACK)
device_id = pcm_device_table[usecase][0];
else
device_id = pcm_device_table[usecase][1];
return device_id;
}
int start_output_stream(struct stream_out *out)
{
int ret = 0;
struct audio_usecase *uc_info;
struct audio_device *adev = out->dev;
out->pcm_device_id = platform_get_pcm_device_id(out->usecase, PCM_PLAYBACK);
if (out->pcm_device_id < 0) {
ALOGE("%s: Invalid PCM device id(%d) for the usecase(%d)",
__func__, out->pcm_device_id, out->usecase);
ret = -EINVAL;
goto error_open;
}
uc_info = (struct audio_usecase *)calloc(1, sizeof(struct audio_usecase));
if (!uc_info) {
ret = -ENOMEM;
goto error_config;
}
uc_info->id = out->usecase;
uc_info->type = PCM_PLAYBACK;
uc_info->stream.out = out;
uc_info->devices = out->devices;
uc_info->in_snd_device = SND_DEVICE_NONE;
uc_info->out_snd_device = SND_DEVICE_NONE;
list_add_tail(&adev->usecase_list, &uc_info->list);
select_devices(adev, out->usecase);
ALOGV("%s: Opening PCM device card_id(%d) device_id(%d) format(%#x)",
__func__, adev->snd_card, out->pcm_device_id, out->config.format);
if (!is_offload_usecase(out->usecase)) {
unsigned int flags = PCM_OUT;
unsigned int pcm_open_retry_count = 0;
if (out->usecase == USECASE_AUDIO_PLAYBACK_AFE_PROXY) {
flags |= PCM_MMAP | PCM_NOIRQ;
pcm_open_retry_count = PROXY_OPEN_RETRY_COUNT;
} else if (out->realtime) {
flags |= PCM_MMAP | PCM_NOIRQ;
} else
flags |= PCM_MONOTONIC;
while (1) {
out->pcm = pcm_open(adev->snd_card, out->pcm_device_id,
flags, &out->config);
if (out->pcm == NULL || !pcm_is_ready(out->pcm)) {
ALOGE("%s: %s", __func__, pcm_get_error(out->pcm));
if (out->pcm != NULL) {
pcm_close(out->pcm);
out->pcm = NULL;
}
if (pcm_open_retry_count-- == 0) {
ret = -EIO;
goto error_open;
}
usleep(PROXY_OPEN_WAIT_TIME * 1000);
continue;
}
break;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
语音通话的情景有所不同,它不是传统意义的音频流,流程大概是这样的:
- 进入通话时,上层会先设置音频模式为 AUDIO_MODE_IN_CALL(HAL 接口是 adev_set_mode()),再传入音频设备 routing=$device(HAL 接口是 out_set_parameters())
- out_set_parameters() 中检查音频模式是否为 AUDIO_MODE_IN_CALL,是则调用 voice_start_call() 打开语音通话的 FE_PCM
3.2. 路由选择
我们在 mixer_pahts.xml 中看到 usecase 相关的通路:
<path name="deep-buffer-playback speaker">
<ctl name="QUAT_MI2S_RX Audio Mixer MultiMedia1" value="1" />
path>
<path name="deep-buffer-playback headphones">
<ctl name="TERT_MI2S_RX Audio Mixer MultiMedia1" value="1" />
path>
<path name="deep-buffer-playback earphones">
<ctl name="QUAT_MI2S_RX Audio Mixer MultiMedia1" value="1" />
path>
<path name="low-latency-playback speaker">
<ctl name="QUAT_MI2S_RX Audio Mixer MultiMedia5" value="1" />
path>
<path name="low-latency-playback headphones">
<ctl name="TERT_MI2S_RX Audio Mixer MultiMedia5" value="1" />
path>
<path name="low-latency-playback earphones">
<ctl name="QUAT_MI2S_RX Audio Mixer MultiMedia5" value="1" />
path>
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
这些通路其实就是连接 usecase、device 之间的路由。比如 “deep-buffer-playback speaker” 是连接 deep-buffer-playback FE PCM、speaker Device 之间的路由,打开 “deep-buffer-playback speaker”,则把 deep-buffer-playback FE PCM 和 speaker Device 连接起来;关闭 “deep-buffer-playback speaker”,则断开 deep-buffer-playback FE PCM 和 speaker Device 的连接。之前提到“device 连接着唯一的 BE DAI,确定了 device 也就能确定所连接的 BE DAI”,因此这些路由通路其实都隐含着 BE DAI 的连接:FE PCM 并非直接到 device 的,而是 FE PCM 先连接到 BE DAI,BE DAI 再连接到 device。这点有助于理解路由控件,路由控件面向的是 FE PCM 和 BE DAI 之间的连接,回放类型的路由控件名称一般是:
$BE_DAI Audio Mixer $FE_PCM
,录制类型的路由控件名称一般是:
$FE_PCM Audio Mixer $BE_DAI
,这很容易分辨。例如 “deep-buffer-playback speaker” 通路中的路由控件:
"QUAT_MI2S_RX Audio Mixer MultiMedia1" value="1" />
- MultiMedia1:deep_buffer usacase 对应的 FE PCM
- QUAT_MI2S_RX:speaker device 所连接的 BE DAI
- Audio Mixer:表示 DSP 路由功能
- value:1 表示连接,0 表示断开连接
这个控件的意思是:把 MultiMedia1 PCM 与 QUAT_MI2S_RX DAI 连接起来。这个控件并没有指明 QUAT_MI2S_RX DAI 与 speaker device 之间的连接,因为 BE DAIs 与 Devices 之间并不需要路由控件,如之前所强调”device 连接着唯一的 BE DAI,确定了 device 也就能确定所连接的 BE DAI“。路由控件的开关不仅仅影响 FE PCMs、BE DAIs 的连接或断开,同时会使能或禁用 BE DAIs,要深入理解这点的话需要去研究 ALSA DPCM(Dynamic PCM) 机制,这里稍作了解即可。路由操作函数是 enable_audio_route()/disable_audio_route(),这两个函数名称很贴合,控制 FE PCMs 与 BE DAIs 的连接或断开。代码流程很简单,把 usecase 和 device 拼接起来就是路由的 path name 了,然后再调用 audio_route_apply_and_update_path() 来设置路由通路:
const char * const use_case_table[AUDIO_USECASE_MAX] = {
[USECASE_AUDIO_PLAYBACK_DEEP_BUFFER] = "deep-buffer-playback",
[USECASE_AUDIO_PLAYBACK_LOW_LATENCY] = "low-latency-playback",
};
const char * const backend_tag_table[SND_DEVICE_MAX] = {
[SND_DEVICE_OUT_HANDSET] = "earphones";
[SND_DEVICE_OUT_SPEAKER] = "speaker";
[SND_DEVICE_OUT_SPEAKER] = "headphones";
};
void platform_add_backend_name(char *mixer_path, snd_device_t snd_device,
struct audio_usecase *usecase)
{
if ((snd_device < SND_DEVICE_MIN) || (snd_device >= SND_DEVICE_MAX)) {
ALOGE("%s: Invalid snd_device = %d", __func__, snd_device);
return;
}
const char * suffix = backend_tag_table[snd_device];
if (suffix != NULL) {
strlcat(mixer_path, " ", MIXER_PATH_MAX_LENGTH);
strlcat(mixer_path, suffix, MIXER_PATH_MAX_LENGTH);
}
}
int enable_audio_route(struct audio_device *adev,
struct audio_usecase *usecase)
{
snd_device_t snd_device;
char mixer_path[MIXER_PATH_MAX_LENGTH];
if (usecase == NULL)
return -EINVAL;
ALOGV("%s: enter: usecase(%d)", __func__, usecase->id);
if (usecase->type == PCM_CAPTURE)
snd_device = usecase->in_snd_device;
else
snd_device = usecase->out_snd_device;
strlcpy(mixer_path, use_case_table[usecase->id], MIXER_PATH_MAX_LENGTH);
platform_add_backend_name(mixer_path, snd_device, usecase);
ALOGD("%s: apply mixer and update path: %s", __func__, mixer_path);
audio_route_apply_and_update_path(adev->audio_route, mixer_path);
ALOGV("%s: exit", __func__);
return 0;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
3.3. 打开 Device
Android 音频框架层中,音频设备仅表示输入输出端点,它不关心 BE DAIs 与 端点之间都经过了哪些部件(widget)。但我们做底层的必须清楚知道:从BE DAIs 到端点,整条通路经历了哪些部件。如下图的外放通路 :
为了使得声音从 speaker 端点输出,我们需要打开 AIF1、DAC1、SPKOUT 这些部件,并把它们串联起来,这样音频数据才能顺着这条路径(AIF1>DAC1>SPKOUT>SPEAKER)一路输出到 speaker。在音频硬件驱动中,定义各种控件用于部件的开关或连接,比如控件 “SPKL DAC1 Switch” 用于控制 SPKL、DAC1 的连接或断开。具体细节请参考:
Linux ALSA 音频系统:物理链路篇我们在 mixer_pahts.xml 中看到 speaker 通路:
<path name="speaker">
<ctl name="SPKL DAC1 Switch" value="1" />
<ctl name="DAC1L AIF1RX1 Switch" value="1" />
<ctl name="DAC1R AIF1RX2 Switch" value="1" />
path>
这些设备通路由 enable_snd_device()/disable_snd_device() 设置:
int enable_snd_device(struct audio_device *adev,
snd_device_t snd_device)
{
int i, num_devices = 0;
snd_device_t new_snd_devices[SND_DEVICE_OUT_END];
char device_name[DEVICE_NAME_MAX_SIZE] = {0};
if (snd_device < SND_DEVICE_MIN ||
snd_device >= SND_DEVICE_MAX) {
ALOGE("%s: Invalid sound device %d", __func__, snd_device);
return -EINVAL;
}
adev->snd_dev_ref_cnt[snd_device]++;
if(platform_get_snd_device_name_extn(adev->platform, snd_device, device_name) < 0 ) {
ALOGE("%s: Invalid sound device returned", __func__);
return -EINVAL;
}
if (adev->snd_dev_ref_cnt[snd_device] > 1) {
ALOGV("%s: snd_device(%d: %s) is already active",
__func__, snd_device, device_name);
return 0;
}
if (audio_extn_spkr_prot_is_enabled())
audio_extn_spkr_prot_calib_cancel(adev);
if (platform_can_enable_spkr_prot_on_device(snd_device) &&
audio_extn_spkr_prot_is_enabled()) {
if (platform_get_spkr_prot_acdb_id(snd_device) < 0) {
adev->snd_dev_ref_cnt[snd_device]--;
return -EINVAL;
}
audio_extn_dev_arbi_acquire(snd_device);
if (audio_extn_spkr_prot_start_processing(snd_device)) {
ALOGE("%s: spkr_start_processing failed", __func__);
audio_extn_dev_arbi_release(snd_device);
return -EINVAL;
}
} else if (platform_split_snd_device(adev->platform,
snd_device,
&num_devices,
new_snd_devices) == 0) {
for (i = 0; i < num_devices; i++) {
enable_snd_device(adev, new_snd_devices[i]);
}
} else {
ALOGD("%s: snd_device(%d: %s)", __func__, snd_device, device_name);
if ((SND_DEVICE_OUT_BT_A2DP == snd_device) &&
(audio_extn_a2dp_start_playback() < 0)) {
ALOGE(" fail to configure A2dp control path ");
return -EINVAL;
}
audio_extn_dev_arbi_acquire(snd_device);
audio_route_apply_and_update_path(adev->audio_route, device_name);
}
return 0;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
值得注意的点有:
- 设备引用计数:每个设备都有各自的引用计数 snd_dev_ref_cnt,引用计数在 enable_snd_device() 中累加,如果大于 1,则表示该设备已经被打开了,那么就不会重复打开该设备;引用计数在 disable_snd_device() 中累减,如果为 0,则表示没有 usecase 需要该设备了,那么就关闭该设备。
- 带保护的外放设备:带 “audio_extn_spkr_prot” 前缀的函数是带保护的外放设备的相关函数,这些带保护的外放设备和其他设备不一样,它虽然属于输出设备,但往往还需要打开一个 PCM_IN 作为 I/V Feedback,有了 I/V Feedback 保护算法才能正常运作。
- 多输出设备的分割:多输出设备,一般指铃声模式下,外放设备与其他设备同时输出的情形;platform_split_snd_device() 把多输出设备分割,比如 SND_DEVICE_OUT_SPEAKER_AND_HEADPHONES 分割为 SND_DEVICE_OUT_SPEAKER + SND_DEVICE_OUT_HEADPHONES,然后再一一打开 speaker、headphones。为什么要把多输出设备分割为 外放设备+其他设备 的形式?现在智能手机的外放设备一般都是带保护的,需要跑喇叭保护算法,而其他设备如蓝牙耳机也可能需要跑 aptX 算法,如果没有分割的话,只能下发一个 acdb id,无法把喇叭保护算法和 aptX 算法都调度起来。多输出设备分割时,还需要遵循一个规则:如果这些设备均连接到同一个 BE DAI,则无须分割。
int platform_split_snd_device(void *platform,
snd_device_t snd_device,
int *num_devices,
snd_device_t *new_snd_devices)
{
int ret = -EINVAL;
struct platform_data *my_data = (struct platform_data *)platform;
if (NULL == num_devices || NULL == new_snd_devices) {
ALOGE("%s: NULL pointer ..", __func__);
return -EINVAL;
}
if (snd_device == SND_DEVICE_OUT_SPEAKER_AND_HEADPHONES &&
!platform_check_backends_match(SND_DEVICE_OUT_SPEAKER, SND_DEVICE_OUT_HEADPHONES)) {
*num_devices = 2;
new_snd_devices[0] = SND_DEVICE_OUT_SPEAKER;
new_snd_devices[1] = SND_DEVICE_OUT_HEADPHONES;
ret = 0;
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
4. 音频设备切换
- 回放场景,框架层回调 HAL 层接口 out_set_parameters(“routing=$device”) 来切换输出设备
- 录制场景,框架层回调 HAL 层接口 in_set_parameters(“routing=$device”) 来切换输入设备
这两个函数最终都是调用 select_device() 来实现设备切换的,select_device() 函数非常复杂,这里仅阐述下主干流程。
select_devices
disable_audio_