DSP

想将算法进一步开发吗?手把手教你搭建基于CNN模型的Flask Web应用

2019-07-13 17:37发布

       对于机器学习和人工智能研究人员而言,好多人都只是构建好模型后就没有进一步处理了,停留在一个比较粗糙的模型上面,没有将其变成一个产品,其实好多创业型人工智能公司都是设计好模型后,将其转化成产品,之后再推向市场。每一个深度学习研究者心中或多或少都想成为一名创业者,但不知道超哪个方向发展。那么,本文将从最简单的网页应用开始,一步一步带领你使用TensorFlow创建一个卷积神经网络(CNN)模型后,使用Flash RESTful API将模型变成一个网页应用产品。
       本文使用TensorFlow NN模块构建CNN模型,并在CIFAR-10数据集上进行训练和测试。为了使模型可以远程访问,使用Python创建Flask web应用来接收上传的图像,并使用HTTP返回其分类标签。

1.安装Python、TensorFlow、PyCharm和Flask API

       孔子云:工欲善其事,比先利其器。程序员亦如此,在进行开发前,需要准备好开发环境并基本掌握开发工具。Python是第一个需要安装的工具,因为整个环境都依赖于它。如果你已经配置好了开发环境,那么可以跳过第一步。

1.1 安装Anaconda/Python

       虽然可以安装传统的方法安装Python,但是建议使用类似于Anaconda这样完整的包,因为里面已经安装了一些好的库可供你直接调用。本文中使用的是Anaconda3版本,对于Windows系统,可以从该网站下载并安装
       为了确保Anaconda3是否安装成功,在CMD命令行中输入(where Python),如果结果类似于下图,则表明安装成功。 0

1.2 安装TensorFlow

       在上一步Anaconda3安装完毕后,接下来是安装TensorFlow(TF)。本文使用的是Windows系统下CPU版本的TF,安装指导可以见此链接
       TF的安装步骤如下: 原文链接