DSP

实现 TensorFlow 多机并行线性加速

2019-07-13 18:23发布

 

2017-9-18 16:53| 发布者: 炼数成金_小数| 查看: 21988| 评论: 0|原作者: 王佐|来自: 天数科技 摘要: 深度学习训练需要海量的数据,这就需要超大规模参数的网络模型拟合。如果训练数据不足,会造成欠拟合;如果网络模型参数太少,只会得到低精度的模型。目前常见网络模型参数已经上亿,参数大小达到数GB。中给出了训练 ... 网络 模型 深度学习 分布式 Tensorflow GPU 王佐,天数润科深度学习平台负责人,曾担任 Intel亚太研发中心Team Leader,万达人工智能研究院资深研究员,长期从事分布式计算系统研究,在大规模分布式机器学习系统架构、机器学习算法设计和应用方面有深厚积累。   在上一家公司就开始实践打磨一个深度优化的深度学习系统,当时从消除网络瓶颈,非凸优化,以及具体的深度学习算法等方面基于PaddlePaddle做了许多工作。目前公司主要深度学习算法都是跑在TensorFlow上,使用配置了GeForce GTX 1080的单机训练,一次完整的训练至少需要一周的时间,所以决定从优化TensorFlow多机并行方面提高算力。   为什么要优化 Tensorflow 多机并行 更多的数据可以提高预测性能[2],这也意味着更沉重的计算负担,未来计算力将成为AI发展的较大瓶颈。在大数据时代,解决存储和算力的方法是Scale out,在AI时代,Scale out也一定是发展趋势,并且大数据分析任务和AI/ML任务会共享处理设备(由于AI/ML迭代收敛和容错的特征,这两种任务未来不太可能使用统一平台),所以需要在分布式环境下优化资源配置[3],消除性能瓶颈。虽然现在TensorFlow能支持多机并行分布式训练,但是针对复杂网络,其训练速度反而不如单台机器[1]。目前已经有IBM[4]和Petuum[1]分别在其深度学习系统PowerAI 4.0和Poseidon中实现多机并行线性加速,本文介绍我如何通过消除TensorFlow的网络瓶颈,实现TensorFlow多机并行线性加速。   TensorFlow分布式训练的网络瓶颈分析 深度学习训练需要海量的数据,这就需要超大规模参数的网络模型拟合。如果训练数据不足,会造成欠拟合;如果网络模型参数太少,只会得到低精度的模型。目前常见网络模型参数已经上亿,参数大小达到数GB。[10]中给出了训练数据和参数大小一些例子。   训练数据和参数大小(来自[10])     目前GPU已经成为深度学习训练的标配。GPU具有数量众多计算单元和超长流水线,并且具备强大并行计算能力与浮点计算能力,可以大幅加速深度学习模型的训练速度,相比CPU能提供更快的处理速度、更少的服务器投入和更低的功耗。这也意味着,GPU集群上训练深度学习模型,迭代时间更短,参数同步更频繁。[9]中对比了主流深度学习系统在CPU和GPU上的训练性能,可以看出GPU每次迭代的时间比CPU少2个数量级。   CPU 训练 alexnet(来自[9])   GPU 训练alexnet(来自[9]) 假设每0.5秒一个迭代,每个worker每秒需要通过网络传输的大于4GB,即使使用10GbE,参数同步也会瞬间把网络占满。考虑到训练数据可能通过NFS或者HDFS加载,也会占用很多网络带宽。在一个数据分析任务和AI/ML任务混合的环境中,大数据分析任务也会消耗很多网络带宽(如shuffle操作),网络延迟会更加严重。所以如果想以Scale out的方式提升算力,网络将是较大的瓶颈。[1]中通过实验证明,在8个节点进行TensorFlow分布式训练,对于VGG19网络,90%的时间花在等待网络传输上面。   网络开销(来自[2])     消除网络瓶颈的方法(一) 分布式深度学习可以采用BSP和SSP两种模式。SSP通过允许faster worker使用staled参数,从而达到平衡计算和网络通信开销时间的效果[8]。SSP每次迭代收敛变慢,但是每次迭代时间更短,在CPU集群上,SSP总体收敛速度比BSP更快,但是在GPU集群上训练,BSP总体收敛速度比SSP反而快很多[6]。   BSP模型有个缺点,就是每次迭代结束,Worker需要发送梯度更新到PS,每次迭代开始,Worker需要从PS接收更新后的参数,这会造成瞬间大量的网络传输。参数服务器通过把参数切分成block,并且shard到多台机器,比较AllReduce,有效利用网络带宽,降低网络延迟。目前主流的深度学习系统(TensorFlow,Mxnet,Petuum)都选择用参数服务器做参数同步。   AllReduce(来自[5]) Parameter Server 上图可以很容易看出,AllReduce拓扑中,Reducer节点成为网络传输的瓶颈。PS拓扑中,通常每台机器启动相同数量的Worker和Parameter Server,每台机器的网络传输量基本相同。   ring AllReduce(来自[5])     对于多机多卡训练,可以把参数现在本机聚合,再指定一个worker跟参数服务器交互,可以大量减少网络传输。可以使用PaddlePaddle提出来的ring AllReduce,优化单机多卡的本地聚合。   解决瞬间大量的网络传输问题另一个方法是实现GPU计算和网络通信的Overlap。在反向传播的backward阶段产生梯度时,可异步地进行梯度更新,并立即计算下一层网络的梯度。梯度更新首先要把新梯度从GPU显存拷贝到CPU内存,这种GPU-CPU的拷贝也可以和GPU计算做Overlap。因为PS是跑在CPU上,所以GPU计算也跟PS参数更新实现Overlap。   GPU计算和网络传输overlap(来自[1])   消除网络瓶颈的方法(二) 减少网络传输量也是消除网络瓶颈的有效途径。网络模型中90%参数集中在FC层。很多深度学习系统提出了减少FC层参数大小的方法,比如Adam中的Sufficient Factor,CNTK中的 1-bit quantization,Petuum中的Sufficient Factor Broadcasting[7]。     实现代码 首先得实现PS和SFB,可以参照petuum,ps-lite,angel。   TensorFlow 相关的修改主要有两个地方:     2. tensorflow/core/kernels/http://matmul_op.cc中的MalMulOp::Compute,这里需要判断是否使用PS或者SFB,从而将本地更新切换为PS更新或SFB更新。   本地更新 PS更新 SFB更新 目前,我们已经复现[1]中的实验结果,实现了Tensorflow多机并行的线性加速。我们还在 Tensorflow 其他方面进行优化。   欢迎加入本站公开兴趣群 商业智能与数据分析群 兴趣范围包括各种让数据产生价值的办法,实际应用案例分享与讨论,分析工具,ETL工具,数据仓库,数据挖掘工具,报表系统等全方位知识 QQ群:81035754