嵌入式芯片体系结构介绍http://blog.csdn.net/orange_os/article/details/7566783
根据处理器的应用范围及处理能力可以将处理器分为嵌入式微处理器、嵌入式微控制器、嵌入式DSP处理器、嵌入式片上系统。
1.嵌入式微处理器(Micro Processor Unit,MPU)
嵌入式微处理器是由通用计算机中的CPU演变而来的。它的特征是具有32位以上的处理器,具有较高的性能,当然其价格也相应较高。但与计算机处理器不同的是,在实际嵌入式应用中,只保留和嵌入式应用紧密相关的功能硬件,去除其他的冗余功能部分,这样就以最低的功耗和资源实现嵌入式应用的特殊要求。和工业控制计算机相比,嵌入式微处理器具有
体积小、重量轻、成本低、可靠性高的优点。目前主要的嵌入式处理器类型有Am186/88、386EX、SC-400、Power
PC、68000、MIPS、ARM/ StrongARM系列等。其中Arm/StrongArm是专为手持设备开发的嵌入式微处理器,属于中档的价位。
由IBM、Apple和Motorola联合开发,并制造出基于PowerPC的多处理器计算机。PowerPC架构具有可伸缩性好、方便灵活的特点。主要有以下产品使用Power PC微处理器
苹果公司:Power Macintosh系列、PowerBook系列(1995年以后的产品)、iBook系列、iMac系列(2005年以前的产品)、eMac系列产品。
任天堂:GameCube 和 Wii。
Sony:PlayStation 3。
MIPS是世界上很流行的一种RISC处理器。MIPS的意思“无内部互锁流水级的微处理器”(Microprocessor without interlocked piped stages),其机制是尽量利用软件办法避免流水线中的数据相关问题。它最早是在80年代初期由斯坦福(Stanford)大学Hennessy教授领导的研究小组研制出来的。MIPS公司的R系列就是在此基础上开发的RISC工业产品的微处理器。这些系列产品为很多计算机公司采用构成各种工作站和计算机系统。MIPS技术公司是美国著名的芯片设计公司,它采用精简指令系统计算结构(RISC)来设计芯片。和英特尔采用的复杂指令系统计算结构(CISC)相比,RISC具有设计更简单、设计周期更短等优点,并可以应用更多先进的技术,开发更快的下一代处理器。MIPS是出现最早的商业RISC架构芯片之一,新的架构集成了所有原来MIPS指令集,并增加了许多更强大的功能。MIPS处理器是八十年代中期RISC
CPU设计的一大热点。MIPS是卖的最好的RISC CPU,可以从任何地方,如Sony, Nintendo的游戏机,Cisco的路由器和SGI超级计算机,看见MIPS产品在销售。目前随着RISC体系结构遭到x86芯片的竞争,MIPS有可能是起初RISC CPU设计中唯一的一个在本世纪盈利的。和英特尔相比,MIPS的授权费用比较低,也就为除英特尔外的大多数芯片厂商所采用。
2.嵌入式微控制器(Microcontroller Unit, MCU)
嵌入式微控制器的典型代表是单片机,从70年代末单片机出现到今天,虽然已经经过了20多年的历史,但这种8位的电子器件目前在嵌入式设备中仍然有着极其广泛的应用。单片机芯片内部集成ROM/EPROM、RAM、总线、总线逻辑、定时/计数器、看门狗、I/O、串行口、脉宽调制输出、A/D、D/A、Flash RAM、EEPROM等各种必要功能和外设。和嵌入式微处理器相比,微控制器的最大特点是单片化,体积大大减小,从而使功耗和成本下降、可靠性提高。微控制器是目前嵌入式系统工业的主流。微控制器的片上外设资源一般比较丰富,适合于控制,因此称微控制器。由于MCU低廉的价格,优良的功能,所以拥有的品种和数量最多,比较有代表性的包括8051、MCS-251、MCS-96/196/296、P51XA、C166/167、68K系列以及
MCU 8XC930/931、C540、C541,并且有支持I2C、CAN-Bus、LCD及众多专用MCU和兼容系列。目前MCU占嵌入式系统约70%的市场份额。近来Atmel出产的Avr单片机由于其集成了FPGA等器件,所以具有很高的性价比,势必将推动单片机获得更高的发展。
3.嵌入式DSP处理器(Embedded Digital Signal Processor, EDSP)
DSP处理器是专门用于信号处理方面的处理器,其在系统结构和指令算法方面进行了特殊设计,具有很高的编译效率和指令的执行速度。在数字滤波、FFT、谱分析等各种仪器上DSP获得了大规模的应用。DSP的理论算法在70年代就已经出现,但是由于专门的DSP处理器还未出现,所以这种理论算法只能通过MPU等由分立元件实现。MPU较低的处理速度无法满足DSP的算法要求,其应用领域仅仅局限于一些尖端的高科技领域。随着大规模集成电路技术发展,1982年世界上诞生了首枚DSP芯片。其运算速度比MPU快了几十倍,在语音合成和编码解码器中得到了广泛应用。至80年代中期,随着CMOS技术的进步与发展,第二代基于CMOS工艺的DSP芯片应运而生,其存储容量和运算速度都得到成倍提高,成为语音处理、图像硬件处理技术的基础。到80年代后期,DSP的运算速度进一步提高,应用领域也从上述范围扩大到了通信和计算机方面。90年代后,DSP发展到了第五代产品,集成度更高,使用范围也更加广阔。目前最为广泛应用的是TI的TMS320C2000/C5000系列,另外如Intel的MCS-296和Siemens的TriCore也有各自的应用范围。根据芯片厂商采用不同的IP核,可以分为以下几类:
Freescale
飞思卡尔数字信号处理器采用StarCore技术,是业内最高性能的可编程器件,可满足基带、航空航天、国防、医疗和测试与测量市场的需求。我们设计的StarCore DSP系列产品提供全面灵活扩展的解决方案,帮助客户加快产品上市。StarCore DSP具有低功耗、低成本的显著特点,是下一代设计的理想解决方案。通过新一代创新实现更加智能的世界。多核芯片主要包括:MSC8122: 带有以太网的四核16位DSP,MSC8126: 带有以太网、TCOP和VCOP的四核16位DSP,MSC8144: 四核DSP,MSC8152:
高性能双核DSP,MSC8154: 高性能四核DSP,MSC8154E: 带有安全功能的高性能四核DSP,MSC8156: 高性能六核DSP,MSC8156E: 带有安全功能的高性能六核DSP,MSC8157: MSC8157宽带无线接入DSP,MSC8158: MSC8158宽带无线接入DSP,MSC8252: 高性能双核DSP,MSC8254: 高性能四核DSP,MSC8256: 高性能六核DSP 。单核芯片主要包括: MSC8151: 高性能单核DSP,MSC8251: 高性能单核DSP。
4.嵌入式片上系统(System On Chip)
SoC追求产品系统最大包容的集成器件,是目前嵌入式应用领域的热门话题之一。SOC最大的特点是成功实现了软硬件无缝结合,直接在处理器片内嵌入操作系统的代码模块。而且SOC具有极高的综合性,在一个硅片内部运用VHDL等硬件描述语言,实现一个复杂的系统。用户不需要再像传统的系统设计一样,绘制庞大复杂的电路板,一点点的连接焊制,只需要使用精确的语言,综合时序设计直接在器件库中调用各种通用处理器的标准,然后通过仿真之后就可以直接交付芯片厂商进行生产。由于绝大部分系统构件都是在系统内部,整个系统就特别简洁,不仅减小了系统的体积和功耗,而且提高了系统的可靠性,提高了设计生产效率。由于SOC往往是专用的,所以大部分都不为用户所知,比较典型的SOC产品是Philips的Smart
XA。少数通用系列如Siemens的TriCore,Motorola的M-Core,某些ARM系列器件,Echelon和Motorola联合研制的Neuron芯片等。预计不久的将来,一些大的芯片公司将通过推出成熟的、能占领多数市场的SOC芯片,一举击退竞争者。SOC芯片也将在声音、图像、影视、网络及系统逻辑等应用领域中发挥重要作用。