声明:原题目转载自LeetCode,解答部分为原创
Problem :
You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols
+
and
-
.
For each integer, you should choose one from
+
and
-
as
its new symbol.
Find out how many ways to assign symbols to make sum of integers equal to target S.
Example 1:
Input: nums is [1, 1, 1, 1, 1], S is 3.
Output: 5
Explanation:
-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3
There are 5 ways to assign symbols to make the sum of nums be target 3.
Note:
- The length of the given array is positive and will not exceed 20.
- The sum of elements in the given array will not exceed 1000.
- Your output answer is guaranteed to be fitted in a 32-bit integer.
Solution:
思路:动态规划类型。通过给数组的每个数值添加+/-符号,可以将数组分为两个部分,分别是正数组pos[ ]和负数组neg[ ],目标结果为:
target = sum_of_pos - sum_of_neg
target =
sum_of_pos - (sum_of_array - sum_of_pos)
target =
2 * sum_of_pos - sum_of_array
通过以上推导,我们可以将题意转化成我们比较熟悉的类型,即求解和为某定值的子集的个数。在本题中,对应的目标和指的是sum_of_pos。
求解和为某定值的子集的个数,详见另一篇文章“[LeetCode] Partition Equal Subset Sum划分数组形成两个和相等的子集”。
代码如下:
#include
#include
using namespace std;
class Solution {
public:
int findTargetSumWays(vector& nums, int s) {
int sum = 0;
for(int i = 0 ; i < nums.size() ; i ++)
{
sum += nums[i];
}
if(sum < s)
return 0;
else if((sum + s) % 2 != 0)
return 0;
else
return count(nums, (sum + s) / 2);
}
int count(vector& nums, int target) {
if(nums.size() == 0)
return 0;
vector count_of_sum(target + 1, 0);
count_of_sum[0] = 1;
for(int i = 0 ; i < nums.size() ; i++)
{
int add = nums[i];
for(int j = target; j >= add; j --)
{
count_of_sum[j] += count_of_sum[j - add];
}
}
return count_of_sum[target];
}
};
int main()
{
Solution text;
vector nums(8,1);
cout << text.findTargetSumWays(nums, 4) << endl;
return 0;
}