DSP

FAST-RCNN makefile.config 参考配置

2019-07-13 18:59发布

深度学习的入门教程 CAFFE深度学习交流群:532629018

//QQ:1746430162 //http://bbs.21ic.com/icview-759778-1-1.html
(项目展示链接)
  本工作室是专业电子类设计开发团队,团队成员全为从事51DSP ARMfpga类嵌入式开发和图像处理、机器学习等相关算法研究多年的软、硬件开发工程师,已与全国几十家客户成功合作。 可以长期提供技术支持,承接各类相关项目开发与咨询服务。     ## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome! #CUDNN  的加速开关,如果为1就说明要用GPU  英伟达的CUDNN库加速。 # cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1
# CPU-only switch (uncomment to build without GPU support). #这个是专门针对没有GPU的用户的。没有GPU用CPU_ONLY=1;
# CPU_ONLY := 1  
# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
#用于指定你的MAKE过程中的编译器,以便更快速的编译。 CUSTOM_CXX := g++-4.7 # CUDA directory contains bin/ and lib/ directories that we need. #CUDA的路径。
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
#专门针对 的 Ubuntu 14.04,如果你直接APT安装的,那么你的路径要改一下。切记
# CUDA_DIR := /usr # CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
#CUDA的架构,如果你的GPU性能比较低,然后你的CUDA<0.6.那么你要用*—50,兼容。
CUDA_ARCH := -gencode arch=compute_35,code=sm_35
  -gencode arch=compute_50,code=sm_50
  -gencode arch=compute_50,code=compute_50 # -gencode arch=compute_20,code=sm_20
#  -gencode arch=compute_20,code=sm_21
#  -gencode arch=compute_30,code=sm_30
# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
#各种数学库的选择,超难搞。自己填坑吧。
BLAS := open
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)! #自己安装的数学库的选择,一定要清楚自己的安装路径,不然会出来各种莫名其妙的错误。头大!
BLAS_INCLUDE := /opt/OpenBLAS/include
BLAS_LIB := /opt/OpenBLAS/lib
# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
#MATLAB的安装路径,说明CAFFE框架是可以与MATLAB提供接口的。
MATLAB_DIR := /opt/matlab/r2014a # NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
# PYTHON_INCLUDE := /usr/include/python2.7
#   /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := $(HOME)/anaconda
PYTHON_INCLUDE := $(ANACONDA_HOME)/include

  $(ANACONDA_HOME)/include/python2.7
  $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include
# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib
# Uncomment to support layers written in Python (will link against Python libs)
# This will require an additional dependency boost_regex provided by boost.
WITH_PYTHON_LAYER := 1
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1
BUILD_DIR := build
DISTRIBUTE_DIR := distribute
# Uncomment for debugging. Does not work on OSX due tohttps://github.com/BVLC/caffe/issues/171
# DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0
# enable pretty build (comment to see full commands)
Q ?= @