深度学习的入门教程CAFFE深度学习交流群:532629018 //QQ:1746430162//http://bbs.21ic.com/icview-759778-1-1.html
(项目展示链接)本工作室是专业电子类设计开发团队,团队成员全为从事51DSP ARMfpga类嵌入式开发和图像处理、机器学习等相关算法研究多年的软、硬件开发工程师,已与全国几十家客户成功合作。
可以长期提供技术支持,承接各类相关项目开发与咨询服务。## Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improving our build system are welcome!#CUDNN 的加速开关,如果为1就说明要用GPU 英伟达的CUDNN库加速。# cuDNN acceleration switch (uncomment to build with cuDNN). USE_CUDNN := 1# CPU-only switch (uncomment to build without GPU support).#这个是专门针对没有GPU的用户的。没有GPU用CPU_ONLY=1;
# CPU_ONLY := 1 # To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++#用于指定你的MAKE过程中的编译器,以便更快速的编译。CUSTOM_CXX := g++-4.7# CUDA directory contains bin/ and lib/ directories that we need.#CUDA的路径。 CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:#专门针对 的 Ubuntu 14.04,如果你直接APT安装的,那么你的路径要改一下。切记 # CUDA_DIR := /usr# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.#CUDA的架构,如果你的GPU性能比较低,然后你的CUDA<0.6.那么你要用*—50,兼容。 CUDA_ARCH := -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_50,code=compute_50# -gencode arch=compute_20,code=sm_20
# -gencode arch=compute_20,code=sm_21
# -gencode arch=compute_30,code=sm_30 # BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas#各种数学库的选择,超难搞。自己填坑吧。 BLAS := open # Custom (MKL/ATLAS/OpenBLAS) include and lib directories. # Leave commented to accept the defaults for your choice of BLAS # (which should work)!#自己安装的数学库的选择,一定要清楚自己的安装路径,不然会出来各种莫名其妙的错误。头大! BLAS_INCLUDE := /opt/OpenBLAS/include
BLAS_LIB := /opt/OpenBLAS/lib# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.#MATLAB的安装路径,说明CAFFE框架是可以与MATLAB提供接口的。 MATLAB_DIR := /opt/matlab/r2014a# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
# PYTHON_INCLUDE := /usr/include/python2.7
# /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root. ANACONDA_HOME := $(HOME)/anaconda
PYTHON_INCLUDE := $(ANACONDA_HOME)/include
$(ANACONDA_HOME)/include/python2.7
$(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib. PYTHON_LIB := /usr/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib# Uncomment to support layers written in Python (will link against Python libs)
# This will require an additional dependency boost_regex provided by boost. WITH_PYTHON_LAYER := 1# Whatever else you find you need goes here. INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1BUILD_DIR := build
DISTRIBUTE_DIR := distribute# Uncomment for debugging. Does not work on OSX due tohttps://github.com/BVLC/caffe/issues/171 # DEBUG := 1# The ID of the GPU that 'make runtest' will use to run unit tests. TEST_GPUID := 0# enable pretty build (comment to see full commands)
Q ?= @