DSP

stm32 FPU 注意事项

2019-07-13 19:30发布

 <转>stm32 FPU 注意事项     keilmdk的设置中完整的define是USE_STDPERIPH_DRIVER,STM32F4XX,__FPU_PRESENT=1,__FPU_USED =1,ARM_MATH_CM4,__CC_ARM 要在MDK中有个选项设置 usr FPU

STM32F4之FPU性能的充分发挥-设置要点

      除了网上的教程外,还要特别注意,当运算中有浮点的数字时要把,数字后面加上一个f。例如表达式中有4.321参与运算。。当你不在4.321后加f时,stm32F4XX的片子不知道把他当做单精度float用FPU来运算,,默认可能是当做double来运算(我不确定),运算速度还是很慢。。切记所有浮点数字后面加上f,,,,有时候keil会提示warning:  #1035-D: single-precision operand implicitly converted to double-precision 这句话的意思就是单精度运算隐式转换成了双精度运算了。这个时候就要在单精度数字后面加个f.
        浮点运算一直是定点CPU的难题,比如一个简单的1.1+1.1,定点CPU必须要按照IEEE-754标准的算法来完成运算,对于8位单片机来说已经完全是噩梦,对32为单片机来说也不会有多大改善。虽然将浮点数进行Q化处理能充分发挥32位单片机的运算性能,但是精度受到限制而不会太高。对于有FPU(浮点运算单元)的单片机或者CPU来说,浮点加法只是几条指令的事情。         现在又FPU或者硬件浮点运算能力的主要有高端DSP(比如TI F28335/C6000/DM6XX/OMAP等),通用CPU(X87数学协处理器)和高级的ARM+DSP处理器等。         STM32-F4属于Cortex-M4F构架,这和M0、M3的最大不同就是多了一个F-float,即支持浮点指令集,因此在处理数学运算时能比M0/M3高出数十倍甚至上百倍的性能,但是要充分发挥FPU的数学性能,还需要一些小小的设置:         1.编译控制选项:虽然STM32F4XX固件库的例程之system_stm32f4XXX.c文件中添加了对应的代码,但给用户评估使用的STM32F4-Discovery例程中却没有,因此MDK4.23编写浮点运算程序时,虽然编译器正确产生了V指令来进行浮点运算,但是因为system_stm32f4XXX.c文件没有启用FPU,因此CPU执行时只认为是遇到非法指令而跳转到HardFault_Handler()中断中原地踏步。因此要保证这个错误不发生,必须要在system_init()函数里面添加如下代码:
  #if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
    SCB->CPACR |= ((3UL << 10*2)|(3UL << 11*2)); 
  #endif           因为这个选项是有条件编译控制的,因此需要在工程选项(Project->Options for target "XXXX")中的C/C++选项卡的Define中加入如下的语句:__FPU_PRESENT=1,__FPU_USED =1。这样编译时就加入了启动FPU的代码,CPU也就能正确高效的使用FPU进行简单的加减乘除了。         但这还远远不够。对于复杂运算,比如三角函数,开方等运算,如果编程时还是使用math.h头文件,那是没法提升效率的:因为math.h头文件是针对所有ARM处理器的,其运算函数都是基于定点CPU和标准算法(IEEE-754),并没有预见使用FPU的情况,需要很多指令和复杂的过程才能完成运算,也就增加了运算时间。因此要充分发挥M4F的浮点功能,就需要使用固件库自带的arm_math.h,这个文件根据编译控制项(__FPU_USED == 1)来决定是使用那一种函数方法:如果没有使用FPU,那就调用keil的标准math.h头文件中定义的函数;如果使用了FPU,那就是用固件库自带的优化函数来解决问题。         在arm_math的开头部分是有这些编译控制信息:          #ifndef _ARM_MATH_H
         #define _ARM_MATH_H

         #define __CMSIS_GENERIC             

         #if defined (ARM_MATH_CM4)
                    #include "core_cm4.h"
         #elif defined (ARM_MATH_CM3)
                     #include "core_cm3.h"
         #elif defined (ARM_MATH_CM0)
                     #include "core_cm0.h"
         #else
                   #include "ARMCM4.h"
                   #warning "Define either ARM_MATH_CM4 OR ARM_MATH_CM3...By Default building on ARM_MATH_CM4....."
         #endif

         #undef  __CMSIS_GENERIC             
               #include "string.h"
                #include "math.h"         就是说如果不使用CMSIS的,就会调用keil自带的标准库函数。否则就用CMSIS的定义。这里因为是用的STM32F4,所以应该要ARM_MATH_CM4控制,即加入core_cm4.h,否则就用使用ARMCM4.h——但在编译时keil会提示找不到这文件。因此需要在工程选项之C/C++选项卡的define中继续加入语句ARM_MATH_CM4。         加入上述编译控制项之后,高级数学函数的使用基本没问题了,比如正余弦三角函数的计算。但需要注意,如果你直接使用sin()、cos()、sqrt()这样的函数,那结果还算调用keil的math.h,你可以在debug时看对应的代码,其汇编指令为BL.W __hardfp_xxx。因此这时要完成三角函数的计算就要使用arm_sin_f32()或者arm_cos_f32(),用法不变,这两个函数的原型分别在arm_sin_f32.c和arm_cos_f32.c中。通过对256点三角函数表的查询和插值算法得到任意角度的精确函数值,这就比“原装”的sin()、cos()快多了。         当然有些例外的是开发函数sqrt(),在arm_math.h中是这么定义的:              static __INLINE arm_status  arm_sqrt_f32(float32_t in, float32_t *pOut)
                     {
                        if(in > 0)
                             {
                                     //    #if __FPU_USED
                                    #if (__FPU_USED == 1) && defined ( __CC_ARM   )
                                              *pOut = __sqrtf(in);
                                   #else