浅谈压缩感知Ⅱ
一、信号与图像的稀疏表示
在DSP(数字信号处理)中,有个很重要的概念:变换域(某个线性空间:一组基函数支撑起来的空间)
一般而言,我们的信号都是在时域或空域中来表示,其实我们可以在
其他变换域中通过某些正交基函数的线性组合来表示信号。如:sinusoids, wavelets, curvelets, Gabor functions,. . .
对于某个变换域或空间,其基函数是确定的,只要得到系数α的这一组值,即可通过该系数向量来表示信号。
那么系数α该怎么求呢?
说了这么多,为什么要通过变换域的系数来表示信号呢?
很明显,系数向量α的大小远小于原始信号,这一个压缩和降维的过程(稀疏性),有利于存储、传输和处理。
下面以图片为例,介绍传统的图像表示方法DCT和现代的图像表示方法小波变换:
Classical Image Representation: DCT
Discrete Cosine Transform (DCT)
Basically a real-valued Fourier transform (sinusoids)
image
如上图所示,左边为原始图像,右边为DCT变换后的图像。
该图像表示二维的频率幅值系数,可以看出,右下角的大部分系数接近于0。也就是说图像的大部分能量都集中在左上角的低频部分(稀疏性),
因此我们只要保留左上角的信息(压缩),就可以很好地重建出左边的图像。(有损)
这也就是JEPG图像压缩标准的基础:DCT变换。
DCT重建(反变换)的图像特点:
平滑区域表现很好,边缘可能会模糊或出现振铃(因为某些高频信号丢失)
Modern Image Representation: 2D Wavelets
有关小波变换的知识,这里就不详述,可以参考:
http://www.zhihu.com/topic/19621077/top-answers
如上图所示,左边为原始图像,中间为尺度图像,右边为小波变换后的系数结构
系数框架:大系数很少,小系数很多(稀疏性)
这也是JPEG2000压缩标准的基础:小波变换。
小波变换重建(反变换)的图像特点:
平滑区域表现很好,边缘更加尖锐(在边缘处理上,比DCT好)