1. 什么是SSE
说到SSE,首先要弄清楚的一个概念是SIMD(单指令多数据流,Single Instruction Multiple Data),是一种数据并行技术,能够在一条指令中同时对多个数据执行运算操作,增加处理器的数据吞吐量。SIMD特别的适用于多媒体应用等数据密集型运算。
Intel公司的单指令多数据流式扩展(SSE,Streaming SIMD Extensions)技术能够有效增强CPU浮点运算的能力。Visual
Studio .NET 2003提供了对SSE指令集的编程支持,从而允许用户在C++代码中不用编写汇编代码就可直接使用SSE指令的功能。
1.1 历史
1996年Intel首先推出了支持MMX的Pentium处理器,极大地提高了CPU处理多媒体数据的能力,被广泛地应用于语音合成、语音识别、音频视频编解码、图像处理和串流媒体等领域。但是MMX只支持整数运算,浮点数运算仍然要使用传统的x87协处理器指令。由于MMX与x87的寄存器相互重叠,在MMX代码中插入x87指令时必须先执行EMMS指令清除MMX状态,频繁地切换状态将严重影响性能。这限制了MMX指令在需要大量浮点运算的程序,如三维几何变换、裁剪和投影中的应用。
另一方面,由于x87古怪的堆栈式缓存器结构,使得硬件上将其流水线化和软件上合理调度指令都很困难,这成为提高x86架构浮点性能的一个瓶颈。为了解决以上这两个问题,AMD公司于1998年推出了包含21条指令的3DNow!指令集,并在其K6-2处理器中实现。K6-2是 第一个能执行浮点SIMD指令的x86处理器,也是第一个支持水平浮点寄存器模型的x86处理器。借助3DNow!,K6-2实现了x86处理器上最快的浮点单元,在每个时钟周期内最多可得到4个单精度浮点数结果,是传统x87协处理器的4倍。许多游戏厂商为3DNow!优化了程序,微软的DirectX
7也为3DNow!做了优化,AMD处理器的游戏性能第一次超过Intel,这大大提升了AMD在消费者心目中的地位。K6-2和随后的K6-III成为市场上的热门货。
1999年,随着Athlon处理器的推出,AMD为3DNow!增加了5条新的指令,用于增强其在DSP方面的性能,它们被称为“扩展3DNow!”(Extended 3DNow!)。
为了对抗3DNow!,Intel公司于1999年推出了SSE指令集。SSE几乎能提供3DNow!的所有功能,而且能在一条指令中处理两倍多的单精度浮点数;同时,SSE完全支持IEEE 754,在处理单精度浮点数时可以完全代替x87。这迅速瓦解了3DNow!的优势。
1999年后,随着主流操作系统和软件都开始支持SSE并为SSE优化,AMD在其2000年发布的代号为“Thunderbird”的Athlon处理器中添加了对SSE的完全支持(“经典”的Athlon或K7只支持SSE中与MMX有关的部分,AMD称之为“扩展MMX”即Extended MMX)。随后,AMD致力于AMD64架构的开发;在SIMD指令集方面,AMD跟随Intel,为自己的处理器添加SSE2和SSE3支持,而不再改进3DNow!。
2010年八月,AMD宣布将在新一代处理器中取消除了两条数据预取指令之外3DNow!指令的支持,并鼓励开发者将3DNow!代码重新用SSE实现。
1.2 MMX和SSE
MMX 是Intel在Pentium MMX中引入的指令集。其缺点是占用浮点数寄存器进行运算(64位MMX寄存器实际上就是浮点数寄存器的别名)以至于MMX指令和浮点数操作不能同时工作。为了减少在MMX和浮点数模式切换之间所消耗的时间,程序员们尽可能减少模式切换的次数,也就是说,这两种操作在应用上是互斥的。后来Intel在此基础上发展出SSE指令集;AMD在此基础上发展出3D Now指令集。
SSE(Streaming SIMD Extensions)是Intel在3D Now!发布一年之后,在PIII中引入的指令集,是MMX的超集。AMD后来在Athlon XP中加入了对这个指令集的支持。这个指令集增加了对8个128位寄存器XMM0-XMM7的支持,每个寄存器可以存储4个单精度浮点数。使用这些寄存器的程序必须使用FXSAVE和FXRSTR指令来保持和恢复状态。但是在PIII对SSE的实现中,浮点数寄存器又一次被新的指令集占用了,但是这一次切换运算模式不是必要的了,只是SSE和浮点数指令不能同时进入CPU的处理线而已。
SSE2是Intel在P4的最初版本中引入的,但是AMD后来在Opteron 和Athlon 64中也加入了对它的支持。这个指令集添加了对64位双精度浮点数的支持,以及对整型数据的支持,也就是说这个指令集中所有的MMX指令都是多余的了,同时也避免了占用浮点数寄存器。这个指令集还增加了对CPU的缓存的控制指令。AMD对它的扩展增加了8个XMM寄存器,但是需要切换到64位模式(AMD64)才可以使用这些寄存器。Intel后来在其EM64T架构中也增加了对AMD64的支持。
SSE3是Intel在P4的Prescott版中引入的指令集,AMD在Athlon 64的第五个版本中也添加了对它的支持。这个指令集扩展的指令包含寄存器的局部位之间的运算,例如高位和低位之间的加减运算;浮点数到整数的转换,以及对超线程技术的支持。
下面是一个演示的例子
使用纯C++
void CSSETestDlg::ComputeArrayCPlusPlus(
float* pArray1, // [in] first source array
float* pArray2, // [in] second source array
float* pResult, // [out] result array
int nSize) // [in] size of all arrays
{
int i;
float* pSource1 = pArray1;
float* pSource2 = pArray2;
float* pDest = pResult;
for ( i = 0; i < nSize; i++ )
{
*pDest = (float)sqrt((*pSource1) * (*pSource1) + (*pSource2)
* (*pSource2)) + 0.5f;
pSource1++;
pSource2++;
pDest++;
}
}
使用SSE内嵌原语
void CSSETestDlg::ComputeArrayCPlusPlusSSE(
float* pArray1, // [in] first source array
float* pArray2, // [in] second source array
float* pResult, // [out] result array
int nSize) // [in] size of all arrays
{
int nLoop = nSize/ 4;
__m128 m1, m2, m3, m4;
__m128* pSrc1 = (__m128*) pArray1;
__m128* pSrc2 = (__m128*) pArray2;
__m128* pDest = (__m128*) pResult;
__m128 m0_5 = _mm_set_ps1(0.5f); // m0_5[0, 1, 2, 3] = 0.5
for ( int i = 0; i < nLoop; i++ )
{
m1 = _mm_mul_ps(*pSrc1, *pSrc1); // m1 = *pSrc1 * *pSrc1
m2 = _mm_mul_ps(*pSrc2, *pSrc2); // m2 = *pSrc2 * *pSrc2
m3 = _mm_add_ps(m1, m2); // m3 = m1 + m2
m4 = _mm_sqrt_ps(m3); // m4 = sqrt(m3)
*pDest = _mm_add_ps(m4, m0_5); // *pDest = m4 + 0.5
pSrc1++;
pSrc2++;
pDest++;
}
}
使用SSE汇编
void CSSETestDlg::ComputeArrayAssemblySSE(
float* pArray1, // [输入] 源数组1
float* pArray2, // [输入] 源数组2
float* pResult, // [输出] 用来存放结果的数组
int nSize) // [输入] 数组的大小
{
int nLoop = nSize/4;
float f = 0.5f;
_asm
{
movss xmm2, f // xmm2[0] = 0.5
shufps xmm2, xmm2, 0 // xmm2[1, 2, 3] = xmm2[0]
mov esi, pArray1 // 输入的源数组1的地址送往esi
mov edx, pArray2 // 输入的源数组2的地址送往edx
mov edi, pResult // 输出结果数组的地址保存在edi
mov ecx, nLoop //循环次数送往ecx
start_loop:
movaps xmm0, [esi] // xmm0 = [esi]
mulps xmm0, xmm0 // xmm0 = xmm0 * xmm0
movaps xmm1, [edx] // xmm1 = [edx]
mulps xmm1, xmm1 // xmm1 = xmm1 * xmm1
addps xmm0, xmm1 // xmm0 = xmm0 + xmm1
sqrtps xmm0, xmm0 // xmm0 = sqrt(xmm0)
addps xmm0, xmm2 // xmm0 = xmm1 + xmm2
movaps [edi], xmm0 // [edi] = xmm0
add esi, 16 // esi += 16
add edx, 16 // edx += 16
add edi, 16 // edi += 16
dec ecx // ecx--
jnz start_loop //如果不为0则转向start_loop
}
}
在信号处理中的实际应用(sse2):
获得信号能量
/*
* Compute Energy of a complex signal vector, removing the DC component!
* input : points to vector
* length : length of vector in complex samples
*/
#define shift 4
#define shift_DC 0
int signal_energy(int *input, unsigned int length)
{
int i;
int temp, temp2;
register __m64 mm0, mm1, mm2, mm3;
__m64 *in;
in = (__m64 *)input;
mm0 = _m_pxor(mm0,mm0);
mm3 = _m_pxor(mm3,mm3);
for (i = 0; i < length >> 1; i++) {
mm1 = in[i];
mm2 = mm1;
mm1 = _m_pmaddwd(mm1, mm1);
mm1 = _m_psradi(mm1, shift);
mm0 = _m_paddd(mm0, mm1);
mm2 = _m_psrawi(mm2, shift_DC);
mm3 = _m_paddw(mm3, mm2);
}
mm1 = mm0;
mm0 = _m_psrlqi(mm0, 32);
mm0 = _m_paddd(mm0, mm1);
temp = _m_to_int(mm0);
temp /= length;
temp <<= shift;
/*now remove the DC component*/
mm2 = _m_psrlqi(mm3, 32);
mm2 = _m_paddw(mm2, mm3);
mm2 = _m_pmaddwd(mm2, mm2);
temp2 = _m_to_int(mm2);
temp2 /= (length * length);
temp2 <<= (2 * shift_DC);
temp -= temp2;
_mm_empty();
_m_empty();
return((temp > 0) ? temp : 1);
}
引用的文章:
矩阵转置的SSE汇编优化艺术以及ARM cortext 汇编优化
SSE优化一例
DCT的优化处理解释和源代码==好