在开关电源当中,开关管的关断和开通时间影响着开关电源的工作效率,而MOS管的一些参数起着决定性的作用,那么
MOS管的选择又存在哪些技巧呢?
由于MOS管对电路的输出有很好的益处,其在电源中经常被当作开关元件使用。服务器和通信设备等应用一般都配置有多个并行电源,以支持N+1冗余与持续工作(图1)。各并行电源平均分担负载,确保系统即使在一个电源出现故障的情况下仍然能够继续工作。不过,这种架构还需要一种方法把并行电源的输出连接在一起,并保证某个电源的故障不会影响到其它的电源。在每个电源的输出端,有一个功率MOS管可以让众电源分担负载,同时各电源又彼此隔离。起这种作用的MOS管被称为“Oring”FET,因为它们本质上是以"OR"逻辑来连接多个电源的输出。
之所以会有这么多文章来讲开关电源当中的MOS管选择,是因为开关电源的设计复杂,而却没有适用于MOS管选择的计算公式。所以在此时,不妨考虑一些关键的参数,以及这些参数为什么至关重要。传统上,许多电源设计人员都采用一个综合品质因数[栅极电荷QG×导通阻抗RDS(ON)]来评估
MOS管或对之进行等级划分。
栅极电荷和导通阻抗之所以重要,是因为二者都对电源的效率有直接的影响。对效率有影响的损耗主要分为两种形式--传导损耗和开关损耗。
栅极电荷是产生开关损耗的主要原因。栅极电荷单位为纳库仑(nc),是MOS管栅极充电放电所需的能量。栅极电荷和导通阻抗RDS(ON)在半导体设计和制造工艺中相互关联,一般来说,器件的栅极电荷值较低,其导通阻抗参数就稍高。开关电源中第二重要的
MOS管参数包括输出电容、阈值电压、栅极阻抗和雪崩能量。
某些特殊的拓扑也会改变不同MOS管参数的相关品质,例如,可以把传统的同步降压转换器与谐振转换器做比较。谐振转换器只在VDS(漏源电压)或ID(漏极电流)过零时才进行MOS管开关,从而可把开关损耗降至最低。这些技术被称为软开关、零电压开关(ZVS)或零电流开关(ZCS)技术。由于开关损耗被最小化,RDS(ON)在这类拓扑中显得更加重要。
低输出电容(COSS)值对这两类转换器都大有好处。谐振转换器中的谐振电路主要由变压器的漏电感与COSS决定。此外,在两个
MOS管关断的死区时间内,谐振电路必须让COSS完全放电。
低输出电容也有利于传统的降压转换器(有时又称为硬开关转换器),不过原因不同。因为每个硬开关周期存储在输出电容中的能量会丢失,反之在谐振转换器中能量反复循环。因此,低输出电容对于同步降压调节器的低边开关尤其重要。
立深鑫电子对开关电源当中的MOS管参数选择给出了一些意见。特别是对其中一些重要的参数进行了着重的讲解。通过参数的确定,我们就能更加快速准确的为开关电源选择合适的MOS管。