Linux电源管理(8)_Wakeup count功能

2019-07-14 01:50发布

1. 前言

Wakeup count是Wakeup events framework的组成部分,用于解决“system suspend和system wakeup events之间的同步问题”。本文将结合“Linux电源管理(6)_Generic PM之Suspend功能”和“Linux电源管理(7)_Wakeup events framework”两篇文章,分析wakeup count的功能、实现逻辑、背后的思考,同时也是对这两篇文章的复习和总结。

2. wakeup count在电源管理中的位置

wakeup count的实现位于wakeup events framework中(drivers/base/power/wakeup.c),主要为两个模块提供接口:通过PM core向用户空间提供sysfs接口;直接向autosleep(请参考下一篇文章)提供接口。 wakeup count architecture

3. wakeup count的功能

wakeup count的功能是suspend同步,实现思路是这样的: 1)任何想发起电源状态切换的实体(可以是用户空间电源管理进程,也可以是内核线程,简称C),在发起状态切换前,读取系统的wakeup counts(该值记录了当前的wakeup event总数),并将读取的counts告知wakeup events framework。 2)wakeup events framework记录该counts到一个全局变量中(saved_count)。 3)随后C发起电源状态切换(如STR),执行suspend过程。 4)在suspend的过程中,wakeup events framework照旧工作(直到系统中断被关闭),上报wakeup events,增加wakeup events counts。 5)suspend执行的一些时间点(可参考“Linux电源管理(6)_Generic PM之Suspend功能”),会调用wakeup  events framework提供的接口(pm_wakeup_pending),检查是否有wakeup没有处理。 6)检查逻辑很简单,就是比较当前的wakeup counts和saved wakeup counts(C发起电源状态切换时的counts),如果不同,就要终止suspend过程。

4. wakeup count的实现逻辑

4.1 一个例子
在进行代码分析之前,我们先用伪代码的形式,写出一个利用wakeup count进行suspend操作的例子,然后基于该例子,分析相关的实现。 1: do { 2: ret = read(&cnt, "/sys/power/wakeup_count"); 3: if (ret) { 4: ret = write(cnt, "/sys/power/wakeup_count"); 5: } else { 6: countine; 7: } 8: } while (!ret); 9:  10: write("mem", "/sys/power/state"); 11:  12: /* goto here after wakeup */
例子很简单: a)读取wakeup count值,如果成功,将读取的值回写。否则说明有正在处理的wakeup events,continue。 b)回写后,判断返回值是否成功,如果不成功(说明读、写的过程中产生了wakeup events),继续读、写,直到成功。成功后,可以触发电源状态切换。
4.2 /sys/power/wakeup_count
wakeup_count文件是在kernel/power/main.c中,利用power_attr注册的,如下(大家可以仔细研读一下那一大段注释,内核很多注释写的非常好,而好的注释,就是软件功力的体现): 1: /* 2: * The 'wakeup_count' attribute, along with the functions defined in 3: * drivers/base/power/wakeup.c, provides a means by which wakeup events can be 4: * handled in a non-racy way. 5: * 6: * If a wakeup event occurs when the system is in a sleep state, it simply is 7: * woken up. In turn, if an event that would wake the system up from a sleep 8: * state occurs when it is undergoing a transition to that sleep state, the 9: * transition should be aborted. Moreover, if such an event occurs when the 10: * system is in the working state, an attempt to start a transition to the 11: * given sleep state should fail during certain period after the detection of 12: * the event. Using the 'state' attribute alone is not sufficient to satisfy 13: * these requirements, because a wakeup event may occur exactly when 'state' 14: * is being written to and may be delivered to user space right before it is 15: * frozen, so the event will remain only partially processed until the system is 16: * woken up by another event. In particular, it won't cause the transition to 17: * a sleep state to be aborted. 18: * 19: * This difficulty may be overcome if user space uses 'wakeup_count' before 20: * writing to 'state'. It first should read from 'wakeup_count' and store 21: * the read value. Then, after carrying out its own preparations for the system 22: * transition to a sleep state, it should write the stored value to 23: * 'wakeup_count'. If that fails, at least one wakeup event has occurred since 24: * 'wakeup_count' was read and 'state' should not be written to. Otherwise, it 25: * is allowed to write to 'state', but the transition will be aborted if there 26: * are any wakeup events detected after 'wakeup_count' was written to. 27: */ 28:  29: static ssize_t wakeup_count_show(struct kobject *kobj, 30: struct kobj_attribute *attr, 31: char *buf) 32: { 33: unsigned int val; 34:  35: return pm_get_wakeup_count(&val, true) ? 36: sprintf(buf, "%u ", val) : -EINTR; 37: } 38:  39: static ssize_t wakeup_count_store(struct kobject *kobj, 40: struct kobj_attribute *attr, 41: const char *buf, size_t n) 42: { 43: unsigned int val; 44: int error; 45:  46: error = pm_autosleep_lock(); 47: if (error) 48: return error; 49:  50: if (pm_autosleep_state() > PM_SUSPEND_ON) { 51: error = -EBUSY; 52: goto out; 53: } 54:  55: error = -EINVAL; 56: if (sscanf(buf, "%u", &val) == 1) { 57: if (pm_save_wakeup_count(val)) 58: error = n; 59: } 60:  61: out: 62: pm_autosleep_unlock(); 63: return error; 64: } 65:  66: tr(wakeup_count); 实现很简单:read时,直接调用pm_get_wakeup_count(注意第2个参数);write时,直接调用pm_save_wakeup_count(注意用户空间的wakeup count功能和auto sleep互斥,会在下篇文章解释原因)。这两个接口均是wakeup events framework提供的接口,跟着代码往下看吧。
4.3 pm_get_wakeup_count
pm_get_wakeup_count的实现如下: 1: bool pm_get_wakeup_count(unsigned int *count, bool block) 2: { 3: unsigned int cnt, inpr; 4:  5: if (block) { 6: DEFINE_WAIT(wait); 7:  8: for (;;) { 9: prepare_to_wait(&wakeup_count_wait_queue, &wait, 10: TASK_INTERRUPTIBLE); 11: split_counters(&cnt, &inpr); 12: if (inpr == 0 || signal_pending(current)) 13: break; 14:  15: schedule(); 16: } 17: finish_wait(&wakeup_count_wait_queue, &wait); 18: } 19:  20: split_counters(&cnt, &inpr); 21: *count = cnt; 22: return !inpr; 23: }
该接口有两个参数,一个是保存返回的count值得指针,另一个指示是否block,具体请参考代码逻辑: a)如果block为false,直接读取registered wakeup events和wakeup events in progress两个counter值,将registered wakeup events交给第一个参数,并返回wakeup events in progress的状态(若返回false,说明当前有wakeup events正在处理,不适合suspend)。 b)如果block为true,定义一个等待队列,等待wakeup events in progress为0,再返回counter。   注1:由4.2小节可知,sysfs发起的read动作,block为true,所以如果有正在处理的wakeup events,read进程会阻塞。其它模块(如auto sleep)发起的read,则可能不需要阻塞。
4.4 pm_save_wakeup_count
pm_save_wakeup_count的实现如下: 1: bool pm_save_wakeup_count(unsigned int count) 2: { 3: unsigned int cnt, inpr; 4: unsigned long flags; 5:  6: events_check_enabled = false; 7: spin_lock_irqsave(&events_lock, flags); 8: split_counters(&cnt, &inpr); 9: if (cnt == count && inpr == 0) { 10: saved_count = count; 11: events_check_enabled = true; 12: } 13: spin_unlock_irqrestore(&events_lock, flags); 14: return events_check_enabled; 15: }
1)注意这个变量,events_check_enabled,如果它不为真,pm_wakeup_pending接口直接返回false,意味着如果不利用wakeup count功能,suspend过程中不会做任何wakeup events检查,也就不会进行任何的同步。 2)解除当前的registered wakeup events、wakeup events in progress,保存在变量cnt和inpr中。 3)如果写入的值和cnt不同(说明读、写的过程中产生events),或者inpr不为零(说明有events正在被处理),返回false(说明此时不宜suspend)。 4)否则,events_check_enabled置位(后续的pm_wakeup_pending才会干活),返回true(可以suspend),并将当前的wakeup count保存在saved count变量中。
4.5 /sys/power/state
再回忆一下“Linux电源管理(6)_Generic PM之Suspend功能”中suspend的流程,在suspend_enter接口中,suspend前的最后一刻,会调用pm_wakeup_pending接口,代码如下: 1: static int suspend_enter(suspend_state_t state, bool *wakeup) 2: { 3: ... 4: error = syscore_suspend(); 5: if (!error) { 6: *wakeup = pm_wakeup_pending(); 7: if (!(suspend_test(TEST_CORE) || *wakeup)) { 8: error = suspend_ops->enter(state); 9: events_check_enabled = false; 10: } 11: syscore_resume(); 12: } 13: ... 14: } 在write wakeup_count到调用pm_wakeup_pending这一段时间内,wakeup events framework会照常产生wakeup events,因此如果pending返回true,则不能“enter”,终止suspend吧! 注2:wakeup后,会清除events_check_enabled标记。 Linux电源管理(7)_Wakeup events framework”中已经介绍过pm_wakeup_pending了,让我们再看一遍吧: 1: bool pm_wakeup_pending(void) 2: { 3: unsigned long flags; 4: bool ret = false; 5:  6: spin_lock_irqsave(&events_lock, flags); 7: if (events_check_enabled) { 8: unsigned int cnt, inpr; 9:  10: split_counters(&cnt, &inpr); 11: ret = (cnt != saved_count || inpr > 0); 12: events_check_enabled = !ret; 13: } 14: spin_unlock_irqrestore(&events_lock, flags); 15:  16: if (ret) 17: print_active_wakeup_sources(); 18:  19: return ret; 20: }
a)首先会判断events_check_enabled是否有效,无效直接返回false。有效的话: b)获得cnt和inpr,如果cnt不等于saved_count(说明这段时间内有events产生),或者inpr不为0(说明有events正在被处理),返回true(告诉调用者,放弃吧,时机不到)。同时清除events_check_enabled的状态。 c)否则,返回false(放心睡吧),同时保持events_check_enabled的置位状态(以免pm_wakeup_pending再次调用)。
Okay,结束了,等待wakeup吧~~~~