作者:沈鑫 原创作品转载请注明出处
《Linux内核分析》MOOC课程
http://mooc.study.163.com/course/USTC-1000029000
首先是mypcb.h,这里主要定义了两个结构体分别用于表示Thread 和 PCB
#define MAX_TASK_NUM 4
#define KERNEL_STACK_SIZE 1024*8
struct Thread {
unsigned long ip;
unsigned long sp;
};
typedef struct PCB{
int pid;
volatile long state;
char stack[KERNEL_STACK_SIZE];
struct Thread thread;
unsigned long task_entry;
struct PCB *next;
}tPCB;
void my_schedule(void);
然后是myiinterrupt.c
#include
#include
#include
#include
#include
#include "mypcb.h"
extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0;
void my_timer_handler(void)
{
#if 1
if(time_count%1000 == 0 && my_need_sched != 1)
{
printk(KERN_NOTICE ">>>my_timer_handler here<<<
");
my_need_sched = 1;
}
time_count ++ ;
#endif
return;
}
void my_schedule(void)
{
tPCB * next;
tPCB * prev;
if(my_current_task == NULL
|| my_current_task->next == NULL)
{
return;
}
printk(KERN_NOTICE ">>>my_schedule<<<
");
next = my_current_task->next;
prev = my_current_task;
if(next->state == 0)
{
asm volatile(
"pushl %%ebp
"
"movl %%esp,%0
"
"movl %2,%%esp
"
"movl $1f,%1
"
"pushl %3
"
"ret
"
"1: "
"popl %%ebp
"
: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
: "m" (next->thread.sp),"m" (next->thread.ip)
);
my_current_task = next;
printk(KERN_NOTICE ">>>switch %d to %d<<<
",prev->pid,next->pid);
}
else
{
next->state = 0;
my_current_task = next;
printk(KERN_NOTICE ">>>switch %d to %d<<<
",prev->pid,next->pid);
asm volatile(
"pushl %%ebp
"
"movl %%esp,%0
"
"movl %2,%%esp
"
"movl %2,%%ebp
"
"movl $1f,%1
"
"pushl %3
"
"ret
"
: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
: "m" (next->thread.sp),"m" (next->thread.ip)
);
}
return;
}
最后是mymain.c
#include
#include
#include
#include
#include
#include "mypcb.h"
tPCB task[MAX_TASK_NUM];
tPCB * my_current_task = NULL;
volatile int my_need_sched = 0;
void my_process(void);
void __init my_start_kernel(void)
{
int pid = 0;
int i;
task[pid].pid = pid;
task[pid].state = 0;
task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
task[pid].next = &task[pid];
for(i=1;imemcpy(&task[i],&task[0],sizeof(tPCB));
task[i].pid = i;
task[i].state = -1;
task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
task[i].next = task[i-1].next;
task[i-1].next = &task[i];
}
pid = 0;
my_current_task = &task[pid];
asm volatile(
"movl %1,%%esp
"
"pushl %1
"
"pushl %0
"
"ret
"
"popl %%ebp
"
:
: "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)
);
}
void my_process(void)
{
int i = 0;
while(1)
{
i++;
if(i%100000000 == 0)
{
printk(KERN_NOTICE "this is process %d -
",my_current_task->pid);
if(my_need_sched == 1)
{
my_need_sched = 0;
my_schedule();
}
printk(KERN_NOTICE "this is process %d +
",my_current_task->pid);
}
}
}
对进程的分析:
1、CPU首先通过这个方法创建了第一个进程,并对进程进行了初始化工作
void __init my_start_kernel(void)
{
int pid = 0;
int i;
task[pid].pid = pid;
task[pid].state = 0;
task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
task[pid].next = &task[pid];
for(i=1;itask[i],&task[0],sizeof(tPCB));
task[i].pid = i;
task[i].state = -1;
task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
task[i].next = task[i-1].next;
task[i-1].next = &task[i];
}
pid = 0;
my_current_task = &task[pid];
asm volatile(
"movl %1,%%esp
"
"pushl %1
"
"pushl %0
"
"ret
"
"popl %%ebp
"
:
: "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)
);
}
2、这段程序创建了多个进程,并对进程进行了初始化
for(i=1;itask[i],&task[0],sizeof(tPCB));
task[i].pid = i;
task[i].state = -1;
task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
task[i].next = task[i-1].next;
task[i-1].next = &task[i];
}
3、由于第一个进程的入口地址被指向了my_process方法,所以从第一个进程开始便开始执行my_process方法
task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process
4、my_process方法中对my_need_sched 的状态进行了修改,使得CPU能够执行到my_timer_handler方法中的printk方法;
并且调用了my_schedule()方法,更新了进程表
my_need_sched = 0;
my_schedule();
5、当内核中只有一个进程时,首先执行的是else这段代码,但当内核中不止一个进程时,就不会在进入else这段代码了。
else
{
next->state = 0;
my_current_task = next;
printk(KERN_NOTICE ">>>switch %d to %d<<<
",prev->pid,next->pid);
asm volatile(
"pushl %%ebp
"
"movl %%esp,%0
"
"movl %2,%%esp
"
"movl %2,%%ebp
"
"movl $1f,%1
"
"pushl %3
"
"ret
"
: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
: "m" (next->thread.sp),"m" (next->thread.ip)
);
}
6、下面我们来分析一下里面的汇编代码。
“movl $1f,%1
”实际是将下一个进程的地址赋给下一个进程的eip,
在”pushl %3
”之后将这个eip压栈,所以执行接下来的”ret
”
语句之后就跳转到了下一个进程的入口地址,也就是标号1的位置。
asm volatile(
"pushl %%ebp
"
"movl %%esp,%0
"
"movl %2,%%esp
"
"movl $1f,%1
"
"pushl %3
"
"ret
"
"1: "
"popl %%ebp
"
: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
: "m" (next->thread.sp),"m" (next->thread.ip)
);
7、由于在my_start_kernel中对进程表进行初始化时使用的是如下方法,所以进程之间形成了一循环,
也就是0->1->2->3->0。
task[i].next = task[i-1].next;
task[i-1].next = &task[i];
总结:
在时间片轮转调度中,所有进程在进程表中形成了一个有向的循环,这样就能实现循环调度了。
next->thread.ip指向的既是当前进程的下一个进程的入口地址,也是下一个进程的当前进程
的入口地址。