1 引言
以太网技术由于其开放性好、价格低廉和使用方便等特点,已经广泛应用于电信级别的网络中,以太网的数据传输速度也从早期的10M提高到100M,GE,10GE。40GE,100GE正式产品也将于2009年推出。
以太网技术是“即插即用”的,也就是将以太网终端接到IP网络上就可以随时使用其提供的业务。但是,只有“同步的”的IP网络才是一个真正的电信级网络,才能够为IP网络传送各种实时业务与数据业务的多重播放业务提供保障。目前,电信级网络对时间同步要求十分严格,对于一个全国范围的IP网络来说,骨干网络时延一般要求控制在50ms之内,现行的互联网网络时间协议NTP(Network Time Protocol),简单网络时间协议SNTP(Simple Network Time Protocol)等不能达到所要求的同步精度或收敛速度。基于以太网的时分复用通道仿真技术(TDM over Ethernet)作为一种过渡技术,具有一定的以太网时钟同步概念,可以部分解决现有终端设备用于以太网的无缝连接问题。IEEE 1588标准则特别适合于以太网,可以在一个地域分散的IP网络中实现微秒级高精度的时钟同步。本文重点介绍IEEE 1588技术及其测试实现。
2 IEEE 1588PTP介绍
IEEE 1588PTP协议借鉴了NTP技术,具有容易配置、快速收敛以及对网络带宽和资源消耗少等特点。IEEE1588标准的全称是“网络测量和控制系统的精密时钟同步协议标准(IEEE 1588 Precision Clock Synchronization Protocol)”,简称PTP(Precision Timing Protocol),它的主要原理是通过一个同步信号周期性的对网络中所有节点的时钟进行校正同步,可以使基于以太网的分布式系统达到精确同步,IEEE 1588PTP时钟同步技术也可以应用于任何组播网络中。
IEEE 1588将整个网络内的时钟分为两种,即普通时钟(Ordinary Clock,OC)和边界时钟(Boundary Clock,BC),只有一个PTP通信端口的时钟是普通时钟,有一个以上
友情提示: 此问题已得到解决,问题已经关闭,关闭后问题禁止继续编辑,回答。
file:///C:/DOCUME~1/WHOAMI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-32326.png
图1 主时钟、从时钟关系示意图
同步的基本原理包括时间发出和接收时间信息的记录,并且对每一条信息增加一个“时间戳”。有了时间记录,接收端就可以计算出自己在网络中的时钟误差和延时。为了管理这些信息,PTP协议定义了4种多点传送的报文类型和管理报文,包括同步报文(Sync),跟随报文(Follow_up),延迟请求报文(Delay_Req),延迟应答报文(Delay_Resp)。这些报文的交互顺序如图2所示。收到的信息回应是与时钟当前的状态有关的。同步报文是从主时钟周期性发出的(一般为每两秒一次),它包含了主时钟算法所需的时钟属性。总的来说同步报文包含了一个时间戳,精确地描述了数据包发出的预计时间。
file:///C:/DOCUME~1/WHOAMI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-13009.png
图2 PTP报文与交换顺序
由于同步报文包含的是预计的发出时间而不是真实的发出时间,所以Sync报文的真实发出时间被测量后在随后的Follow_Up报文中发出。Sync报文的接收方记录下真实的接收时间。使用Follow_Up报文中的真实发出时间和接收方的真实接收时间,可以计算出从属时钟与主时钟之间的时差,并据此更正从属时钟的时间。但是此时计算出的时差包含了网络传输造成的延时,所以使用Delay_Req报文来定义网络的传输延时。
Delay_Req报文在Sync报文收到后由从属时钟发出。与Sync报文一样,发送方记录准确的发送时间,接收方记录准确的接收时间。准确的接收时间包含在Delay_Resp报文中,从而计算出网络延时和时钟误差。同步的精确度与时间戳和时间信息紧密相关。纯软件的方案可以达到毫秒的精度,软硬件结合的方案可以达到微秒的精度。
PTP协议基于同步数据包被传播和接收时的最精确的匹配时间,每个从时钟通过与主时钟交换同步报文而与主时钟达到同步。这个同步过程分为漂移测量阶段和偏移测量与延迟测量阶段。
第一阶段修正主时钟与从时钟之间的时间偏差,称为漂移测量。如图3所示,在修正漂移量的过程中,主时钟按照定义的间隔时间(缺省是2s)周期性地向相应的从时钟发出惟一的同步报文。这个同步报文包括该报文离开主时钟的时间估计值。主时钟测量传递的准确时间T0 K,从时钟测量接收的准确时间T1 K。之后主时钟发出第二条报文——跟随报文
file:///C:/DOCUME~1/WHOAMI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-32384.png
图3 PTP时钟漂移测量计算
为了提高修正精度,可以把主时钟到从时钟的报文传输延迟等待时间考虑进来,即延迟测量,这是同步过程的第二个阶段(见图4)。
file:///C:/DOCUME~1/WHOAMI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-9873.png
图4 PTP时钟延迟和偏移计算
从时钟向主时钟发出一个“延迟请求”数据报文,在这个过程中决定该报文传递准确时间T2。主时钟对接收数据包打上一个时间戳,然后在“延迟响应”数据包中把接收时间戳B送回到从时钟。根据传递时间戳B和主时钟提供的接收时间戳D,从时钟计算与主时钟之间的延迟时间。与偏移测量不同,延迟测量是不规则进行的,其测量间隔时间(缺省值是4~60s之间的随机值)比偏移值测量间隔时间要大。这样使得网络尤其是设备终端的负荷不会太大。
图5是典型的IEEE 1588PTP测试场景,IXIA测试端口可以仿真普通时钟并处于主模式,被测设备,比如以太网交换机处于边界时钟状态,验证其对各种时钟报文的处理能力与实现;另一种测试情况是IXIA端口仿真边界时钟并处于从属模式,这时候被测设备处于主模式,验证被测设备在主时钟模式下的处理机制。IXIA端口都有PTP协议栈,可以对PTP时钟信息做灵活的配置。
file:///C:/DOCUME~1/WHOAMI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-6213.png
图5 IEEE 1588典型测试场景
表2 IXIA IEEE 1588PTP测试统计信息
file:///C:/DOCUME~1/WHOAMI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-32577.png
IXIA IEEE 1588PTP方案还可以实现负面测试(Negative Testing),可以根据需要设定发送Sync报文中Follow-up报文的比例,观察丢弃掉的Follow-up报文对被测设备的影响;在Follow-up报文中增加错误数据包,验证被测设备的处理与检测能力;发送包括抖动与偏移的带有时间戳的数据包迫使Sync报文失败,检验被测设备的处理机制。图6所示为PTP时钟配制界面。
file:///C:/DOCUME~1/WHOAMI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-21437.png
图6 PTP时钟配置界面
4 结束语
根据最新的信息公告,IXIA 被eWeek授予年度十大产品奖之一,被Frost & Sullivan授予2008全球三重播放综合测试和监测设备的年度市场领先奖,被Test & Measurement World授予三个最佳测试奖,以及被Internet Telephony授予年度产品奖,详细信息参见下面的链接:http://www.ixiacom.com/news_and_events/press_releases/display.php?skey=225。被如此众多令人尊敬有技术影响力组织机构的认可,进一步证明了IXIA正在推动测试、测量和业务认证市场的进步和战略创新,在城域以太网网技术方面,IXIA同样保持领先的地位,推出了业界第一个100G高速以太网测试加速系统,第一个在统一2~7层IP测试平台上推出了IEEE 1588PTP 精密时钟同步协议测试技术,IXIA这些技术创新和技术的领导地位,都为全面的IP测试提供了可靠保证。
一周热门 更多>