嵌入式操作系统VxWorks简介

2019-07-23 13:39发布

VxWorks操作系统是美国WindRiver公司于1983年设计开发的一种嵌入式实时操作系统(RTOS),是嵌入式开发环境的关键组成部分。良好的持续发展能力、高性能的内核以及友好的用户开发环境,在嵌入式实时操作系统领域占据一席之地。它以其良好的可靠性和卓越的实时性被广泛地应用在通信、军事、航空、航天等高精尖技术及实时性要求极高的领域中,如卫星通讯、军事演习、弹道制导、飞机导航等。在美国的 F-16、FA-18 战斗机、B-2 隐形轰炸机和爱国者导弹上,甚至连1997年4月在火星表面登陆的火星探测器上也使用到了VxWorks。
WindRiver公司网址

实时操作系统和分时操作系统的区别
     从操作系统能否满足实时性要求来区分,可把操作系统分成分时操作系统和实时操作系统。  分时操作系统按照相等的时间片调度进程轮流运行,分时操作系统由调度程序自动计算进程的优先级,而不是由用户控制进程的优先级。这样的系统无法实时响应外部异步事件。    实时操作系统能够在限定的时间内执行完所规定的功能,并能在限定的时间内对外部的异步事件作出响应。分时系统主要应用于科学计算和一般实时性要求不高的场合。实时性系统主要应用于过程控制、数据采集、通信、多媒体信息处理等对时间敏感的场合。
VxWorks的特点
  • 可靠性
    操作系统的用户希望在一个工作稳定,可以信赖的环境中工作,所以操作系统的可靠性是用户首先要考虑的问题。而稳定、可靠一直是VxWorks的一个突出优点。自从对中国的销售解禁以来,VxWorks以其良好的可靠性在中国赢得了越来越多的用户。
  • 实时性
   实时性是指能够在限定时间内执行完规定的功能并对外部的异步事件作出响应的能力。实时性的强弱是以完成规定功能和作出响应时间的长短来衡量的。
    VxWorks的实时性做得非常好,其系统本身的开销很小,进程调度、进程间通信、中断处理等系统公用程序精练而有效,它们造成的延迟很短。VxWorks 提供的多任务机制中对任务的控制采用了优先级抢占(Preemptive Priority Scheduling)和轮转调度(Round-Robin Scheduling)机制,也充分保证了可靠的实时性,使同样的硬件配置能满足更强的实时性要求,为应用的开发留下更大的余地。
  • 可裁减性
   用户在使用操作系统时,并不是操作系统中的每一个部件都要用到。例如图形显示、文件系统以及一些设备驱动在某些嵌入系统中往往并不使用。  VxWorks由一个体积很小的内核及一些可以根据需要进行定制的系统模块组成。VxWorks 内核最小为 8kB,即便加上其它必要模块,所占用的空间也很小,且不失其实时、多任务的系统特征。由于它的高度灵活性,用户可以很容易地对这一操作系统进行定制或作适当开发,来满足自己的实际应用需要。
对一个实时内核的要求
一个实时操作系统内核需满足许多特定的实时环境所提出的基本要求,这些包括:
多任务:由于真实世界的事件的异步性,能够运行许多并发进程或任务是很重要的。多任务提供了一个较好的对真实世界的匹配,因为它允许对应于许多外部事件的多线程执行。系统内核分配CPU给这些任务来获得并发性。抢占调度:真实世界的事件具有继承的优先级,在分配CPU的时候要注意到这些优先级。基于优先级的抢占调度,任务都被指定了优先级,在能够执行的任务(没有被挂起或正在等待资源)中,优先级最高的任务被分配CPU资源。换句话说,当一个高优先级的任务变为可执行态,它会立即抢占当前正在运行的较低优先级的任务。

任务间的通讯与同步:在一个实时系统中,可能有许多任务作为一个应用的一部分执行。系统必须提供这些任务间的快速且功能强大的通信机制。内核也要提供为了有效地共享不可抢占的资源或临界区所需的同步机制。任务与中断之间的通信:尽管真实世界的事件通常作为中断方式到来,但为了提供有效的排队、优先化和减少中断延时,我们通常希望在任务级处理相应的工作。所以需要杂任务级和中断级之间存在通信。

友情提示: 此问题已得到解决,问题已经关闭,关闭后问题禁止继续编辑,回答。
该问题目前已经被作者或者管理员关闭, 无法添加新回复
12条回答
edishen
1楼-- · 2019-07-23 13:57
VxWorks 是美国 Wind River System 公司( 以下简称风河 公司 ,即 WRS 公司)推出的一个实时操作系统。Tornado 是WRS 公司推出的一套实时操作系统开发环境,类似Microsoft Visual C,但是提供了更丰富的调试、仿真环境和工具。

  VxWorks 的组成

  VxWorks操作系统有以下部件组成:

  

  内核(wind)

   多任务调度(采用基于优先级抢占方式,同时支持同优先级任务间的分时间片调度)

   任务间的同步

   进程间通信机制

   中断处理

   定时器和内存管理机制 

  I/O 系统

  VxWorks 提供了一个快速灵活的与 ANSI C 兼容的 I/O 系统,包括 UNIX 标准的Basic I/O(creat(), remove(), open(),close(), read(), write(), and ioctl().),Buffer I/O (fopen(), fclose(), fread(), fwrite(), getc(), putc()) 以及POSIX 标准的异步 I/O。VxWorks 包括以下驱动程序:网络驱动、管道驱动、RAM盘驱动、SCSI驱动、键盘驱动、显示驱动、磁盘驱动、并口驱动等 

  文件系统

  支持四种文件系统: dosFs,rt11Fs,rawFs 和 tapeFs

  支持在一个单独的 VxWorks 系统上同时并存几个不同的文件系统。

  板级支持包 BSP(Board Support Package)

  板级支持包向VxWorks操作系统提供了对各种板子的硬件功能操作的统一的软件接口,它是保证VxWorks操作系统可移植性的关键,它包括硬件初始化、中断的产生和处理、硬件时钟和计时器管理、局域和总线内存地址映射、内存分配等等。 每个板级支持包括一个 ROM 启动(Boot ROM)或其它启动机制。

  

  网络支持

  它提供了对其它VxWorks系统和TCP/IP 网络系统的"透明"访问,包括与BSD套接字兼容的编程接口,远程过程调用(RPC),SNMP(可选项),远程文件访问(包括客户端和服务端的NFS机制以及使用RSH,FTP 或 TFTP的非NFS机制)以及BOOTP 和代理ARP、DHCP、DNS、OSPF、RIP。无论是松耦合的串行线路、标准的以太网连接还是紧耦合的利用共享内存的背板总线,所有的 VxWorks 网络机制都遵循标准的 Internet 协议。

  

  系列网络产品

   WindNet SNMP

   WindNet STREAMS

   WindNet 第三方产品,包括 OSI、SS7、ATM、Frame Relay、CORBA、ISDN、X.25、

   CMIP/GDMO、分布式网络管理等。

  这些产品扩展了VxWorks的网络特性,并增强了嵌入式处理器的网络特性

   虚拟内存( VxVMI)与共享内存(VxMP)

  VxVMI 为带有 MMU 的目标板提供了虚拟内存机制。

  VxMP 提供了共享信号量,消息队列和在不同处理器之间的共享内存区域。

   目标代理(Target Agent)

  目标代理遵循 WBD(Wind Debug)协议,允许目标机与主机上的 Tornado 开发工具相连。在目标代理的缺省设置中,目标代理是以 VxWorks 的一个任务tWdbTask 的形式运行的。

  Tornado 目标服务器(Target Server)向目标代理发送调试请求。调试请求通常决定目标代理对系统中其它任务的控制和处理。缺省状态下,目标服务器与目标代理通过网络进行通信,但是用户也可以改变通信方式。

   实用库

  VxWorks 提供了一个实用例程的扩展集,包括中断处理、看门狗定时器、消息登录、 内存分配、字符扫描、线缓冲和环缓冲管理、链表管理和 ANSI C 标准。

  

  基于目标机的工具

  在 Tornado 开发系统中,开发工具是驻留在主机上的。但是也可以根据需要将基于目标机的Shell 和装载卸载模块加入 VxWorks。

  嵌入式Vxworks系统的主要应用领域主要有以下几方面:

  1.数据网络:如:以太网交换机、路由器、远程接入服务器等

  2.远程通讯:如:电信用的专用分组交换机和自动呼叫分配器,蜂窝电话系统等

  3.医疗设备:如:放射理疗设备

  4.消费电子:如:个人数字助理等

  5.交通运输:如:导航系统、高速火车控制系统等

  6.工业:如:机器人

  7.航空航天:如:卫星跟踪系统

  8.多媒体:如:电视会议设备

  9.计算机外围设备:如:X终端、I/O 系统等

  总之,VxWorks的系统结构是一个相当小的微内核的层次结构。内核仅提供多任务环境、进程间通信和同步功能。这些功能模块足够支持VxWorks在较高层次所提供的丰富的性能的要求。

  VxWorks6.0版本新增功能:

  风河通用平台VxWorks版(GPP)是所有设备软件应用程序的首要基础平台。此通用平台基于全球应用最广泛的运行时操作系统--VxWorks而构建。最新版本(VxWorks 6.1)中的各运行时组件可向后兼容VxWorks的早期版本。此最新版本包含了增强的内存保护、容错管理,并支持最新的网络和安全协议以及设备与企业间的连通性。

  通用平台组合了最为严格和确定性的实时操作系统,其产品完全集成了现有的产品开发解决方案,从而能够满足贵企业的各种苛刻需求。它无缝集成了业界标准的RTOS(VxWorks 6.1)、功能强大的开发套件(Workbench 2.3)、网络和安全协议、用于工程人员快速启动项目的培训以及迅速扩展您开发团队综合技能的各种专业服务。

  新增功能:

  通用平台VxWorks 3.1版扩展了的3.0功能:它扩展了架构支持、多处理器消息处理(基于业界标准的开源式TIPC协议)、增强了网络堆栈以及支持风河Workbench的最新版本。

  支持下述新架构

  - ARM 9, ARM 11

  - Intel Pentium M

  - Intel XScale

  - Renesas SuperH-4, SuperH-4a

  * 支持通用平台VxWorks 3.0版中的所有架构和BSP

  * 多处理器消息通道(基于TIPC协议)

  * 网络堆栈包括PPP、PPPoE以及多链路PPP

  * 风河Workbench 2.3
edishen
2楼-- · 2019-07-23 15:43
嵌入式操作系统VxWorks简介
VxWorks操作系统是美国WindRiver公司于1983年设计开发的一种嵌入式实时操作系统(RTOS),是嵌入式开发环境的关键组成部分。良好的持续能力、高性能的内核以及友好的用户开发环境,在嵌入式实时操作系统领域占据一席之地。它以其良好的可靠性和卓越的实时性被广泛地应用在通信、军事、航空、航天等高精尖技术及实时性要求极高的领域中,如卫星通讯、军事演习、弹道制导、飞机导航等。在美国的 F-16、FA-18 战斗机、B-2 隐形轰炸机和爱国者导弹上,甚至连1997年在火星表面登陆的火星探测器上也使用到了VxWorks。
2.1                    实时操作系统和分时操作系统的区别
从操作系统能否满足实时性要求来区分,可把操作系统分成分时操作系统和实时操作系统。
分时操作系统按照相等的时间片调度进程*流运行,分时操作系统由调度程序自动计算进程的优先级,而不是由用户控制进程的优先级。这样的系统无法实时响应外部异步事件。
实时操作系统能够在限定的时间内执行完所规定的功能,并能在限定的时间内对外部的异步事件作出响应。 分时系统主要应用于科学计算和一般实时性要求不高的场合。实时性系统主要应用于过程控制、数据采集、通信、多媒体信息处理等对时间敏感的场合。
2.2                    VxWorks的特点
可靠性
    操作系统的用户希望在一个工作稳定,可以信赖的环境中工作,所以操作系统的可靠性是用户首先要考虑的问题。而稳定、可靠一直是VxWorks的一个突出优点。自从对中国的销售解禁以来,VxWorks以其良好的可靠性在中国赢得了越来越多的用户。
实时性
    实时性是指能够在限定时间内执行完规定的功能并对外部的异步事件作出响应的能力。实时性的强弱是以完成规定功能和作出响应时间的长短来衡量的。
    VxWorks 的实时性做得非常好,其系统本身的开销很小,进程调度、进程间通信、中断处理等系统公用程序精练而有效,它们造成的延迟很短。VxWorks 提供的多任务机制中对任务的控制采用了优先级抢占(Preemptive Priority Scheduling)和*转调度(Round-Robin Scheduling)机制,也充分保证了可靠的实时性,使同样的硬件配置能满足更强的实时性要求,为应用的开发留下更大的余地。
可裁减性
    用户在使用操作系统时,并不是操作系统中的每一个部件都要用到。例如图形显示、文件系统以及一些设备驱动在某些嵌入系统中往往并不使用。
    VxWorks 由一个体积很小的内核及一些可以根据需要进行定制的系统模块组成。VxWorks 内核最小为 8kB,即便加上其它必要模块,所占用的空间也很小,且不失其实时、多任务的系统特征。由于它的高度灵活性,用户可以很容易地对这一操作系统进行定制或作适当开发,来满足自己的实际应用需要。
2.3                    对一个实时内核的要求
一个实时操作系统内核需满足许多特定的实时环境所提出的基本要求,这些包括:
多任务:由于真实世界的事件的异步性,能够运行许多并发进程或任务是很重要的。多任务提供了一个较好的对真实世界的匹配,因为它允许对应于许多外部事件的多线程执行。系统内核分配CPU给这些任务来获得并发性。
抢占调度:真实世界的事件具有继承的优先级,在分配CPU的时候要注意到这些优先级。基于优先级的抢占调度,任务都被指定了优先级,在能够执行的任务(没有被挂起或正在等待资源)中,优先级最高的任务被分配CPU资源。换句话说,当一个高优先级的任务变为可执行态,它会立即抢占当前正在运行的较低优先级的任务。
任务间的通讯与同步:在一个实时系统中,可能有许多任务作为一个应用的一部分执行。系统必须提供这些任务间的快速且功能强大的通信机制。内核也要提供为了有效地共享不可抢占的资源或临界区所需的同步机制。
任务与中断之间的通信:尽管真实世界的事件通常作为中断方式到来,但为了提供有效的排队、优先化和减少中断延时,我们通常希望在任务级处理相应的工作。所以需要杂任务级和中断级之间存在通信。
2.4                     系统编程方法
    实时系统主要包括:多任务调度(采用优先级抢占方式),任务间的同步和进程间通信机制.
    一个多任务环境允许实时应用程序以一套独立任务的方式构筑,每个任务拥有独立的执行线程和它自己的一套系统资源。进程间通信机制使得这些任务的行为同步、协调。 wind使用中断驱动和优先级的方式。它缩短了上下文转换的时间开销和中断的时延。在 VxWorks 中,任何例程都可以被启动为一个单独的任务,拥有它自己的上下文和堆栈。还有一些其它的任务机制可以使任务挂起、继续、删除、延时或改变优先级。
    另一个重要内容是:硬件中断处理。硬件产生中断,统治系统调用相应的中断历程(ISR),位是系统得到尽快的响应,ISR在它自己独立的上下文和堆栈中运行.它的优先级高于任何任务优先级.
    中断延迟(Interrupt Latency) 中断延迟是指从硬件中断发生到开始执行中断处理程序第一条指令之间的这段时间。
    优先级驱动(Priority-Driven) 优先级驱动是指多任务系统中,当前运行任务总是具有最高优先级的就绪任务。
多任务调度
两种方式: 优先抢占和*转调度(Preemptive Priority,Round-Robin Scheduling).
    优先抢占(Preemptive Priority): 每一个任务都有一个优先级,系统核心保证优先级最高的任务运行于CPU.如果有任务优先级高于当前的任务优先级,系统立刻保存当前任务的上下文,切换到优先级高的上下文.
    抢占(Preemptive): 抢占是指当系统处于核心态运行时, 允许任务的重新调度。换句话说就是指正在执行的任务可以被打断,让另一个任务运行。抢占提高了应用对异步事件的响应性能力。操作系统内核可抢占,并不是说任务调度在任何时候都可以发生。例如当一个任务正在通过一个系统调用访问共享数据时,重新调度和中断都被禁止.
    任务上下文(Task Context): 任务上下文是指任务运行的环境。例如,针对x86的CPU,任务上下文可包括程序计数器、堆栈指针、通用寄存器的内容.
    上下文切换(Context Switching): 多任务系统中,上下文切换是指CPU的控制权由运行任务转移到另外一个就绪任务时所发生的事件,当前运行任务转为就绪(或者挂起、删除)状态,另一个被选定的就绪任务成为当前任务。上下文切换包括保存当前任务的运行环境,恢复将要运行任务的运行环境。上下文的内容依赖于具体的CPU.
    *转调度(Round-Robin Scheduling):使所有相同优先级,状态为ready的任务公平分享CPU(分配一定的时间间隔,使个任务*流享有CPU).
    系统由256个优先级,从0到255,0为最高,255为最低. 任务在被创建时设定了优先级.也可用taskPrioritySet ( ) 来改变任务优先级.
    任务的主要状态: READY,PEND,DELAY,SUSPEND...
ready-------->pended -----------semTake()/msgQReceive()-其他任务
ready-------->delayed-----------taskDelay()
ready-------->suspended---------taskSuspend()
pended------->ready-------------semaGive()/msgQSend()-其他任务
pended------->suspended---------taskSuspend()
delayed------>ready-------------expired delay
delayed------>suspended---------taskSuspend()
suspended---->ready-------------taskResume()/taskActivate()
suspended---->pended------------taskResume()
suspended---->delayed-----------taskResume()
 
    *转调度 (Round-Robin): *转调度可以扩充到优先抢占方式中,当多个任务优先级相同的情况下,*转调度算法使任务按平等的时间片运行于CPU,共享CPU.避免一个任务长时间占用CPU,而导致其他任务不能运行.可以用 kernelTimeSlice( ) 来定义时间长度.
    taskLock()和 taskUnlock()用来取消优先抢占方式 和恢复优先抢占方式.
注意: 一个任务可以调用taskDelete()删除另一个任务,但是如果一个当前正在运行的任务被删除后,该任务的内存没有释放,而其他任务不知道,依然在等待,结果导致系统stop.用 taskSafe()和 taskUnsafe() 来保证正在运行的任务不被删除.
用法如下:
taskSafe ();
semTake (semId, WAIT_FOREVER);
/* Block until semaphore **ailable */
. . . . critical region .
semGive (semId); semGive (semId);  
/* Release semaphore */
taskUnsafe ();
任务间的同步和进程间协调
    信号量作为任务间同步和互斥的机制。在 wind 核中有几种类型的信号量,它们分别针对不同的应用需求:二进制信号量、计数信号量、互斥信号量和 POSIX 信号量。所有的这些信号量是快速和高效的,它们除了被应用在开发设计过程中外,还被广泛地应用在VxWorks 高层应用系统中。对于进程间通信,wind 核也提供了诸如消息队列、管道、套接字和信号等机制。
    任务间的同步和进程间协调的几种方式:
    内存共享(Shared Memory),对简单的数据共享而言.
    信号量(Semaphore),基本的互斥和同步.
    消息队列(Message queues)和管道(Pipe),单个CPU中,任务间的信息传递.
    套结字(Socket)和远程调用(Remote procedure calls),相对于网络任务间的通信.
    信号(Signals),出错处理(Exception handling).
    互斥(Mutual Exclusion)
    互斥是用来控制多任务对共享数据进行串行访问的同步机制。在多任务应用中,当两个或多个任务同时访问共享数据时,可能会造成数据破坏。互斥使它们串行地访问数据,从而达到保护数据的目的.
解决互斥的几种方法:
1. 关闭中断的方法(intLock): 能解决任务和中断ISR之间产生的互斥.
funcA ()
{ int lock = intLock();
. . critical region that cannot be interrupted .
intUnlock (lock); }
但在实时系统中采取这个办**影响系统对外部中断及时响应和处理的能力.
2. 关闭系统优先级(taskLock): 关闭系统优先级,这样在当前任务执行时,除了中断外,不会有其他优先级高的任务来抢占CPU,影响当前程序运行.
funcA ()
{ taskLock ();
. . critical region that cannot be interrupted .
taskUnlock (); }
    这种方法阻止了高优先级的任务抢先运行,在实时系统中也是不适合的,除非关闭优先级的时间特别短.
3. 信号量(Semaphore): 信号量是解决互斥和同步协调进程最好的方法
    当一个Semaphore创建时,指定了任务队列的种类
semBCreat( SEM_Q_PRIORITY, SEM_FULL), SEM_Q_PRIORITY 指明处于等待状态的任务在等待队列中以优先级的顺序排列
semBCreat(SEM_Q_FIFO,SEM_FULL), SEM_Q_FIFO指明 处于等待状态的任务在等待队列中以先进先出的顺序排列
当一个Semaphore创建时,指定了这个semaphore是用在解决互斥还是用来同步任务
semBCreat( SEM_Q_FIFO, SEM_FULL) , SEM_FULL 指明用于任务间互斥.
SEM_ID semMutex;
semMutex = semBCreate (SEM_Q_PRIORITY, SEM_FULL);
.........
semTake (semMutex, WAIT_FOREVER);
. . critical region, only accessible by a single task at a time .
semGive (semMutex);
semBCreat(SEM_Q_FIFO,SEM_EMPTY), SEM_EMPTY 指明用于任务间同步.

/* includes */
#include 'vxWorks.h'
#include 'semLib.h'
SEM_ID syncSem;
/* ID of sync semaphore */
init ( int someIntNum )
{ /* connect interrupt service routine */
intConnect (INUM_TO_IVEC (someIntNum), eventInterruptSvcRout, 0);
/* create semaphore */
syncSem = semBCreate (SEM_Q_FIFO, SEM_EMPTY);
/* spawn task used for synchronization. */
taskSpawn ('sample', 100, 0, 20000, task1, 0,0,0,0,0,0,0,0,0,0);
}
task1 (void)
{ ...
semTake (syncSem, WAIT_FOREVER);
/* wait for event to occur */
printf ('task 1 got the semaphoren');
...
/* process event */
}
eventInterruptSvcRout (void)
{ ...
semGive (syncSem);
/* let task 1 process event */
...
}
函数介绍:
semTake(semID,time out)--------有Semaphore空闲,就Take, 如果没有,由time out 定,超时则向下执行
优先级反转(Priority Inversion)
    优先级反转是指一个任务等待比它优先级低的任务释放资源而被阻塞,如果这时有中等优先级的就绪任务,阻塞会进一步恶化。优先级继承技术可用来解决优先级反转问题。 
Priority inversion arises when a higher-priority task is forced to wait an indefinite period of time for a lower-priority task to complete.
优先级继承(Priority Inheritance)
    优先级继承可用来解决优先级反转问题。当优先级反转发生时,优先级较低的任务被暂时地提高它的优先级,使得该任务能尽快执行,释放出优先级较高的任务所需要的资源。 The mutual-exclusion semaphore has the option SEM_INVERSION_SAFE, which enables a priority-inheritance algorithm. The priority-inheritance protocol assures that a task that owns a resource executes at the priority of the highest-priority task blocked on that resource. Once the task priority has been elevated, it remains at the higher level until all mutual-exclusion semaphores that the task owns are released; then the task returns to its normal, or standard, priority. Hence, the 'inheriting' task is protected from preemption by any intermediate-priority tasks. This option must be used in conjunction with a priority queue (SEM_Q_PRIORITY).
edishen
3楼-- · 2019-07-23 18:18
2      VXWORKS内核分析

1. 实时操作系统的结构
    在计算的早期开发的操作系统的最原始的结构形式是一个统一的实体(monolithic)。在这样的系统中,提供的不同功能的模块,如处理器管理、内存管理、输入输出等,通常是独立的。然而他们在执行过程中并不考虑其他正在使用中的模块,各个模块都以相同的时间粒度运行。
    由于现代实时环境需要许多不同的功能,以及在这样的环境中存在的并发活动所引起的异步性和非确定性,操作系统变得更加复杂。所以早期操作系统的统一结构的组织已经被更加精确的内部结构所淘汰。层次结构的起点----内核
    操作系统的最好的内部结构模型是一个层次性的结构,最低层是内核。这些层次可以看成为一个倒置的金字塔,每一层都建立在较低层的功能之上。 内核仅包含一个操作系统执行的最重要的低层功能。正象一个统一结构的操作系统,内核提供了在高层软件与下层硬件之间的抽象层。然而,内核仅提供了构造操作系统其他部分所需的最小操作集。
对一个实时内核的要求
    一个实时操作系统内核需满足许多特定的实时环境所提出的基本要求,这些包括: 多任务:由于真实世界的事件的异步性,能够运行许多并发进程或任务是很重要的。多任务提供了一个较好的对真实世界的匹配,因为它允许对应于许多外部事件的多线程执行。系统内核分配CPU给这些任务来获得并发性。
    抢占调度:真实世界的事件具有继承的优先级,在分配CPU的时候要注意到这些优先级。基于优先级的抢占调度,任务都被指定了优先级, 在能够执行的任务(没有被挂起或正在等待资源)中,优先级最高的任务被分配CPU资源。换句话说,当一个高优先级的任务变为可执行态,它会立即抢占当前正在运行的较低优先级的任务。
    快速灵活的任务间的通信与同步:在一个实时系统中,可能有许多任务作为一个应用的一部分执行。系统必须提供这些任务间的快速且功能强大的通信机制。内核也要提供为了有效地共享不可抢占的资源或临界区所需的同步机制。
    方便的任务与中断之间的通信:尽管真实世界的事件通常作为中断方式到来,但为了提供有效的排队、优先化和减少中断延时,我们通常希望在任务级处理相应的工作。所以需要杂任务级和中断级之间存在通信。
    性能边界:一个实时内核必须提供最坏情况的性能优化,而非针对吞吐量的性能优化。我们更期望一个系统能够始终以50微妙执行一个函数,而不期望系统平均以10微妙执行该函数,但偶尔会以75微妙执行它。
    特殊考虑:由于对实时内核的要求的增加,必须考虑对内核支持不断增加的复杂功能的要求。这包括多进程处理,Ada和对更新的、功能更强的处理器结构如RISC的支持。

拥有其它名字的内核
    许多商用化的内核支持的功能远强于上面所列的要求。在这方面,他们不是真正的内核,而更象一个小的统一结构的操作系统。因为他们包含简单的内存分配、时钟管理、甚至一些输入输出系统调用的功能。
    这种分类不仅仅是在语义上的争论,在这篇文章的后面章节将说明限制内核功能和油画这些功能的重要性。
2. VxWorks内核:Wind
    VxWorks操作系统是一种功能最全的现在可以获得的独立于处理器的实时系统。然而,VxWorks是带有一个相当小的真正微内核的层次结构。内核仅提供多任务环境、进程间通信和同步功能。这些功能模块足够支持VxWorks在较高层次所提供的丰富的性能的要求。 通常内核操作对于用户是不可见的。应用程序为了实现需要内核参与的任务管理和同步使用一些系统调用,但这些调用的处理对于调用任务是不可见的。应用程序仅链接恰当的VxWorks例程(通常使用VxWorks的动态链接功能),就象调用子程序一样发出系统调用。这种接口不象有些系统需要一个笨拙的跳转表接口,用户需要通过一个整数来指定一个内核功能调用。
多任务
    内核的基本功能是提供一个多任务环境。多任务使得许多程序在表面上表现为并发执行,而事实上内核是根据基本的调度算法使他们分段执行。每个明显独立的程序被成为一个任务。每个任务拥有自己的上下文,其中包含在内核调度使该任务执行的时候它所看到的CPU环境和系统资源。
任务状态
    内核维护系统中的每个任务的当前状态。状态迁移发生在应用程序调用内核功能服务的时候。下面定义了wind内核状态:
    就绪态----一个任务当前除了CPU不等待任何资源
    阻塞态----一个任务由于某些资源不可获得而被阻塞
    延迟态----一个任务睡眠一段时间
    挂起态----主要用于调试的一个辅助状态,挂起禁止任务的执行
    任务被创建以后进入挂起态,需要通过特定的操作使被创建的任务进入就绪态,这一操作执行速度很快,使应用程序能够提前创建任务,并以一种快捷的方式激活该任务。
调度控制
    多任务需要一个调度算法分配CPU给就绪的任务。在VxWorks中默认的调度算法是基于优先级的抢占调度,但应用程序也可以选择使用时间片轮转调度。
    基于优先级抢占调度:基于优先级的抢占调度,每个任务被指定一个优先级,内核分配CPU给处于就绪态的优先级最高的任务。调度采用抢占的方式,是因为当一个优先级高于当前任务的任务变为就绪态时,内核将立即保存当前任务的上文,并切换到高优先级任务的上文。VxWorks有从0到255共256个优先级。在创建的时候任务被指定一个优先级,在任务运行的过程中可以动态地修改优先级以便跟踪真实世界的事件优先级。外部
中断被指定优先于任何任务的优先级,这样能够在任何时候抢占一个任务。
    时间片轮转:基于优先级抢占调度可以扩充时间片轮转调度。时间片轮转调度允许在相同优先级的处于就绪态的任务公平地共享CPU。没有时间片轮转调度,当有多个任务在同一优先级共享处理器时,一个任务可能独占CPU,不会被阻塞直到被一个更高优先级的任务抢占,而不给同一优先级的其他任务运行的机会。如果时间片轮转被使能,执行任务的时间计数器在每个时钟滴答递增。当指定的时间片耗尽,计数器会被清零,该任
务被放在同一优先级任务队列的队尾。加入特定优先级组的新任务被放在该组任务的队尾,并将运行计数器初始化为零。
基本的任务函数
        用于状态控制的基本任务函数包括一个任务的创建、删除、挂起和唤醒。一个任务也可以使自己睡眠一个特定的时间间隔不去运行。许多其他任务例程提供由任务上下文获得的状态信息。这些例程包括访问一个任务当前处理器寄存器控制。
任务删除问题
    wind内核提供防止任务被意外删除的机制。通常,一个执行在临界区或访问临界资源的任务要被特别保护。我们设想下面的情况:一个任务获得一些数据结构的互斥访问权,当它正在临界区内执行时被另一个任务删除。由于任务无法完成对临界区的操作,该数据结构可能还处于被破坏或不一致的状态。而且,假想任务没有机会释放该资源,那麽现在其他任何任务现在就不能获得该资源,资源被冻结了。
         任何要删除或终止一个设定了删除保护的任务的任务将被阻塞。当被保护的任务完成临界区操作以后,它将取消删除保护以使自己可以被删除,从而解阻塞删除任务

    正如上面所展示的,任务删除保护通常伴有互斥操作。
    这样,为了方便性和效率,互斥信号量包含了删除保护选项。(参见'互斥信号量')
任务间通信
    为了提供完整的多任务系统的功能,wind内核提供了一套丰富的任务间通信与同步的机制。这些通信功能使一个应用中各个独立的任务协调他们的活动。
共享地址空间
    wind内核的任务间通信机制的基础是所有任务所在的共享地址空间。通过共享地址空间,任务能够使用共享数据结构的指针自由地通信。管道不需要映射一块内存区到两个互相通信任务的寻址空间。
         不幸的是,共享地址空间具有上述优点的同时,带来了未被保护内存的重入访问的危险。UNIX操作系统通过隔离进程提供这样的保护,但同时带来了对于实时操作系统来说巨大的性能损失。
互斥操作
    当一个共享地址空间简化了数据交换,通过互斥访问避免资源竞争就变为必要的了。用来获得一个资源的互斥访问的许多机制仅在这些互斥所作用的范围上存在差别。实现互斥的方法包括禁止中断、禁止任务抢占和通过信号量进行资源锁定。
    中断禁止:最强的互斥方法是屏蔽中断。这样的锁定保证了对CPU的互斥访问。这种方法当然能够解决互斥的问题,但它对于实时是不恰当的,因为它在锁定期间阻止系统响应外部事件。长的中断延时对于要求有确定的响应时间的应用来说是不可接受的。
    抢占禁止:禁止抢占提供了强制性较弱的互斥方式。 当前任务运行的过程中不允许其他任务抢占,而中断服务程序可以执行。这也可能引起较差的实时响应,就象被禁止中断一样,被阻塞的任务会有相当长时间的抢占延时,就绪态的高优先级的任务可能会在能够执行前被强制等待一段不可接受的时间。为避免这种情况,在可能的情况下尽量使用信号量实现互斥。
    互斥信号量:信号量是用于锁定共享资源访问的基本方式。不象禁止中断或抢占,信号量限制了互斥操作仅作用于相关的资源。一个信号量被创建来保护资源。VxWorks的信号量遵循Dijkstra的P()和V()操作模式。
    当一个任务请求信号量,P(), 根据在发出调用时信号量的置位或清零的状态, 会发生两种情况。如果信号量处于置位态, 信号量会被清零,并且任务立即继续执行。如果信号量处于清零态,任务会被阻塞来等待信号量。
    当一个任务释放信号量,V(),会发生几种情况。如果信号量已经处于置位态,释放信号量不会产生任何影响。如果信号量处于清零态且没有任务等待该信号量,信号量只是被简单地置位。如果信号量处于清零态且有一个或多个任务等待该信号量,最高优先级的任务被解阻塞,信号量仍为清零态。
    通过将一些资源与信号量关联,能够实现互斥操作。当一个任务要操作资源,它必须首先获得信号量。只要任务拥有信号量,所有其他的任务由于请求该信号量而被阻塞。当一个任务使用完该资源,它释放信号量,允许等待该信号量的另一个任务访问该资源。
    Wind内核提供了二值信号量来解决互斥操作所引起的问题。 这些问题包括资源拥有者的删除保护,由资源竞争引起的优先级逆转。
    删除保护----互斥引起的一个问题会涉及到任务删除。在由信号量保护的临界区中,需要防止执行任务被意外地删除。删除一个在临界区执行的任务是灾难性的。资源会被破坏,保护资源的信号量会变为不可获得,从而该资源不可被访问。通常删除保护是与互斥操作共同提供的。由于这个原因,互斥信号量通常提供选项来隐含地提供前面提到的任务删除保护的机制。
    优先级逆转/优先级继承----优先级逆转发生在一个高优先级的任务被强制等待一段不确定的时间以便一个较低优先级的任务完成执行。考虑下面的假设:
    T1,T2和T3分别是高、中、低优先级的任务。T3通过拥有信号量而获得相关的资源。当T1抢占T3,为竞争使用该资源而请求相同的信号量的时候,它被阻塞。如果我们假设T1仅被阻塞到T3使用完该资源为止,情况并不是很糟。毕竟资源是不可被抢占的。然而,低优先级的任务并不能避免被中优先级的任务抢占,一个抢占的任务如T2将阻止T3完成对资源的操作。这种情况可能会持续阻塞T1等待一段不可确定的时间。这种情况成为优先级逆转,因为尽管系统是基于优先级的调度,但却使一个高优先级的任务等待一个低优先级的任务完成执行。
    互斥信号量有一个选项允许实现优先级继承的算法。优先级继承通过在T1被阻塞期间提升T3的优先级到T1解决了优先级逆转引起的问题。这防止了T3,间接地防止T1,被T2抢占。通俗地说,优先级继承协议使一个拥有资源的任务以等待该资源的任务中优先级最高的任务的优先级执行。当执行完成,任务释放该资源并返回到它正常的或标准的优先级。因此,继承优先级的任务避免了被任何中间优先级的任务抢占。
    同步
    信号量另一种通常的用法是用于任务间的同步机制。在这种情况下,信号量代表一个任务所等待的条件或事件。最初,信号量是在清零态。一个任务或中断通过置位该信号量来指示一个事件的发生。等待该信号量的任务将被阻塞直到事件发生、该信号量被置位。一旦被解阻塞,任务就执行恰当的事件处理程序。信号量在任务同步中的应用对于将中断服务程序从冗长的事件处理中解放出来以缩短中断响应时间是很有用的。
消息队列
    消息队列提供了在任务与中断服务程序或其他任务间交换变长消息的一种较低层的机制。这种机制在功能上类似于管道,但有较少的开销。
管道、套接字、远程过程调用和更多
    许多高层的VxWorks机制提供任务间通信的更高层的抽象,包括管道、TCP/IP套接字、远程过程调用和更多。为了保持裁减内核为仅包含足够支持高层功能的一个最小函数集的设计目标,这些特性都是基于上面描述的内核同步方式的。

edishen
4楼-- · 2019-07-23 21:16
 精彩回答 2  元偷偷看……
edishen
5楼-- · 2019-07-24 01:21
Soraka
6楼-- · 2019-07-24 01:27
实时操作系统能够在限定的时间内执行完所规定的功能,并能在限定的时间内对外部的异步事件作出响应。

一周热门 更多>