/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/*!< At this stage the microcontroller clock setting is already configured,
this is done through SystemInit() function which is called from startup
file (startup_stm32f429_439xx.s) before to branch to application main.
To reconfigure the default setting of SystemInit() function, refer to
system_stm32f4xx.c file
*/
/* TIM Configuration */
TIM_Config();
/* -----------------------------------------------------------------------
TIM4 Configuration: generate 4 PWM signals with 4 different duty cycles.
In this example TIM4 input clock (TIM4CLK) is set to 4 * APB1 clock (PCLK1),
since TIMPRE bit from RCC_DCKCFGR register is set.
TIM4CLK = 4 * PCLK1
PCLK1 = HCLK / 4
=> TIM4CLK = HCLK = SystemCoreClock
To get TIM4 counter clock at 21 MHz, the prescaler is computed as follows:
Prescaler = (TIM4CLK / TIM4 counter clock) - 1
Prescaler = (SystemCoreClock /21 MHz) - 1
To get TIM4 output clock at 30 KHz, the period (ARR)) is computed as follows:
ARR = (TIM4 counter clock / TIM4 output clock) - 1
= 699
Note:
SystemCoreClock variable holds HCLK frequency and is defined in system_stm32f4xx.c file.
Each time the core clock (HCLK) changes, user had to call SystemCoreClockUpdate()
function to update SystemCoreClock variable value. Otherwise, any configuration
based on this variable will be incorrect.
----------------------------------------------------------------------- */
RCC_TIMCLKPresConfig(RCC_TIMPrescActivated);
/* Compute the prescaler value */
PrescalerValue = (uint16_t) (SystemCoreClock / 21000000) - 1;
/* Time base configuration */
TIM_TimeBaseStructure.TIM_Period = 699;
TIM_TimeBaseStructure.TIM_Prescaler = PrescalerValue;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d
", file, line) */
while (1)
{}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
******************************************************************************
* @file TIM_PWMOutput/main.c
* @Author MCD Application Team
* @version V1.0.1
* @date 11-November-2013
* @brief This example shows how to configure the TIM peripheral in PWM
* (Pulse Width Modulation) mode.
******************************************************************************
* @attention
*
* <h2><center>© COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx.h"
/** @addtogroup STM32F4xx_StdPeriph_Examples
* @{
*/
/** @addtogroup TIM_PWMOutput
* @{
*/
/* Private typedef -----------------------------------------------------------*/
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
uint16_t CCR1_Val = 350;
uint16_t CCR2_Val = 262;
uint16_t CCR3_Val = 175;
uint16_t CCR4_Val = 87;
uint16_t PrescalerValue = 0;
/* Private function prototypes -----------------------------------------------*/
void TIM_Config(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/*!< At this stage the microcontroller clock setting is already configured,
this is done through SystemInit() function which is called from startup
file (startup_stm32f429_439xx.s) before to branch to application main.
To reconfigure the default setting of SystemInit() function, refer to
system_stm32f4xx.c file
*/
/* TIM Configuration */
TIM_Config();
/* -----------------------------------------------------------------------
TIM4 Configuration: generate 4 PWM signals with 4 different duty cycles.
In this example TIM4 input clock (TIM4CLK) is set to 4 * APB1 clock (PCLK1),
since TIMPRE bit from RCC_DCKCFGR register is set.
TIM4CLK = 4 * PCLK1
PCLK1 = HCLK / 4
=> TIM4CLK = HCLK = SystemCoreClock
To get TIM4 counter clock at 21 MHz, the prescaler is computed as follows:
Prescaler = (TIM4CLK / TIM4 counter clock) - 1
Prescaler = (SystemCoreClock /21 MHz) - 1
To get TIM4 output clock at 30 KHz, the period (ARR)) is computed as follows:
ARR = (TIM4 counter clock / TIM4 output clock) - 1
= 699
TIM4 Channel1 duty cycle = (TIM4_CCR1/ TIM4_ARR)* 100 = 50%
TIM4 Channel2 duty cycle = (TIM4_CCR2/ TIM4_ARR)* 100 = 37.5%
TIM4 Channel3 duty cycle = (TIM4_CCR3/ TIM4_ARR)* 100 = 25%
TIM4 Channel4 duty cycle = (TIM4_CCR4/ TIM4_ARR)* 100 = 12.5%
Note:
SystemCoreClock variable holds HCLK frequency and is defined in system_stm32f4xx.c file.
Each time the core clock (HCLK) changes, user had to call SystemCoreClockUpdate()
function to update SystemCoreClock variable value. Otherwise, any configuration
based on this variable will be incorrect.
----------------------------------------------------------------------- */
RCC_TIMCLKPresConfig(RCC_TIMPrescActivated);
/* Compute the prescaler value */
PrescalerValue = (uint16_t) (SystemCoreClock / 21000000) - 1;
/* Time base configuration */
TIM_TimeBaseStructure.TIM_Period = 699;
TIM_TimeBaseStructure.TIM_Prescaler = PrescalerValue;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure);
/* PWM1 Mode configuration: Channel1 */
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = CCR1_Val;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC1Init(TIM4, &TIM_OCInitStructure);
TIM_OC1PreloadConfig(TIM4, TIM_OCPreload_Enable);
/* PWM1 Mode configuration: Channel2 */
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = CCR2_Val;
TIM_OC2Init(TIM4, &TIM_OCInitStructure);
TIM_OC2PreloadConfig(TIM4, TIM_OCPreload_Enable);
/* PWM1 Mode configuration: Channel3 */
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = CCR3_Val;
TIM_OC3Init(TIM4, &TIM_OCInitStructure);
TIM_OC3PreloadConfig(TIM4, TIM_OCPreload_Enable);
/* PWM1 Mode configuration: Channel4 */
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = CCR4_Val;
TIM_OC4Init(TIM4, &TIM_OCInitStructure);
TIM_OC4PreloadConfig(TIM4, TIM_OCPreload_Enable);
TIM_ARRPreloadConfig(TIM4, ENABLE);
/* TIM4 enable counter */
TIM_Cmd(TIM4, ENABLE);
while (1)
{}
}
/**
* @brief Configure the TIM4 Ouput Channels.
* @param None
* @retval None
*/
void TIM_Config(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
/* TIM4 clock enable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE);
/* GPIOD clock enable */
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);
/* GPIOD Configuration: TIM4 CH1 (PD12), TIM4 CH2 (PD13), TIM4 CH3 (PD14) and TIM4 CH4 (PD15) */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP ;
GPIO_Init(GPIOD, &GPIO_InitStructure);
/* Connect TIM4 pins to AF2 */
GPIO_PinAFConfig(GPIOD, GPIO_PinSource12, GPIO_AF_TIM4);
GPIO_PinAFConfig(GPIOD, GPIO_PinSource13, GPIO_AF_TIM4);
GPIO_PinAFConfig(GPIOD, GPIO_PinSource14, GPIO_AF_TIM4);
GPIO_PinAFConfig(GPIOD, GPIO_PinSource15, GPIO_AF_TIM4);
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d ", file, line) */
while (1)
{}
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
這是ST官方的程序example
怎麼接可以看GPIO_Configuration()一般都會寫在裡面
調值就控制CCRx_Register
绝对正确答案!
或者从模电学起
一周热门 更多>