1 引 言
在科学研究及其他各种领域中,数据采集和监测已经成为日益重要的检测技术。
在许多工业测控机械、医疗仪器以及消费电子产品中,都对数据采集系统的实时性与功耗提出了更高的要求:即在满足微功耗、微型化的总体设计原则的基础上,又要能实时反映现场采集数据的变化。这就对系统的功耗、采样速度、数据存储和传输速度等提出了更高的要求。然而,随着半导体与微控制器技术的飞速发展,各种微电子器件性能不断提升,功耗却不断降低。技术的进步使得高速度、低功耗的数据采集系统得以实现。
本文设计的数据采集与显示系统采用 TI公司研制的MSP430系列超低功耗单片机作为核心控制元件,实现了数据的高速采集与显示。
系统主要特点:
- 功耗低 所有器件均采用低功耗器件全速工作时,总体功率小到1W。
- 速度高 由于单片机内置DMA控制器,可以显著提高系统的速度。
2 系统硬件结构
系统在兼顾成本的同时,尽量采用集成度高、功耗低、速度快的器件。系统结构如图1所示。
核心采用MSP430F169单片机,MSP430系列单片机是TI公司研发的16位超低功耗单片机,非常适合各种功率要求低的场合。MSP430F169单片机全部单周期指令,速度高,内部自带的12化A/D和DMA控制单元可以分别为系统采样电路和数据传输部分采用,使得系统的硬件电路更加集成化、小型化。
3 系统各模块介绍及软件设计
限于篇幅,仅对系统几个主要模块的功能与工作过程做介绍。
3.1 A/D模块及其子程序设计
MSP430F169内部的ADC12模块能够实现12位精度的模数转换,具有高速和通用的特性。其主要特点有:12位转换精度;内置采样与保持电路;有多种时钟源可提供给ADC12模块,且模块本身内置时钟发生器;内置温度传感器;配有8路外部通道与4路内部通道;内置参考电源,且参考电压有6种可编程的组合;模数转换有4种模式,可灵活应用以节省软件量及时间;可以关闭ADC12模块以节省系统能耗。
3.2 DMA模块及其程序设计
DMA(Direct Memory Access)是直接存储器访问的意思。DMA控制器不需要CPU的干预即可提供最先进的可配置的数据传输能力,从而可以解放CPU,使其不是将更多的时间浪费在等待上,而是将更多的时间用于处理数据。DMA控制器可在内存与内部及外部硬件之间进行精确的传输控制。DMA消除了数据传输延迟时间以及CPU等待等各种开销,从而提高了MCU利用率,使信号处理能力更强。
(1)拥有3个独立的DMA通道。
(2)可以配置通道的优先权。
(3)每个字/字节传送只需要2个MCLK时钟周期。
(4)字节和字可以混合传送:字节到字节、字节到字、字到字节、字到字。
(5)可配置多种触发源。
(6)可配置DMA触发方式:边沿触发或电平触发。
(7)4种寻址模式:固定地址到固定地址、固定地址到块地址、块地址到固定地址、块地址到块地址。
当A/D在单通道上执行时,ADC12IFGx标志置位表示转化结束继而触发DMA操作,同时将A/D转换后的数据存储到定义在RAM中的数组r_data[]。采用DMA通道0进行数据传输时的初始化程序如下所示:
由于此CPU与LCD均采为3.3 V 工作电压,因此单片机与LCD之间的接口不存在电平匹配问题,由于显示器只需要接受指令,所以不需要大功率驱动,因此单片机可以直接与LCD连接。单片机I/O引脚丰富,为了提高显示速度,采用并行接口,单片机的P4口与P5口的三根线分别作为数据线和控制线与LCD相连接,接口电路如图2所示。
软件初始化流程图如图3所示。
一周热门 更多>