四、使用 const可以限定目标优化
1、源代码:
void fir_fxd1(short input[], short coefs[], short out[])
{ int i, j;
for (i = 0; i < 40; i++)
{
for (j = 0; j < 16; j++)
out[i*16+j]= coefs[j] * input[i + 15 - j];
}
}
2、改编后的代码:
void fir_fxd2(const short input[], const short coefs[], short out[])
{
int i, j;
for (i = 0; i < 40; i++)
{
for (j = 0; j < 16; j++)
out[i*16+j]= coefs[j] * input[i + 15 - j];
}
3、优化方法说明:
C6000 编译器如果确定两条指令是不相关的,则安排它们并行执行。 关键字 const可以
指定一个变量或者一个变量的存储单元保持不变。这有助于帮助编译器确定指令的不相关
性。例如上例中,源代码不能并行执行,而结果改编后的代码可以并行执行。
4、技巧:
使用 const 可以限定目标,确定存在于循环迭代中的存储器的不相关性。
五、 使用内联指令优化算法
1、源代码:
void vecsum(short *sum, short *in1, short *in2, unsigned int N)
{
int i;
for (i = 0; i < N; i++)
sum = in1 + in2;
}
2、改编后的代码:
void vecsum6(int *sum, const int *in1, const int *in2, unsigned int N)
{
int i;
int sz = N >> 2;
_nassert(N >= 20);
for (i = 0; i < sz; i += 2)
{
sum = _add2(in1 , in2);
sum[i+1] = _add2(in1[i+1], in2[i+1]);
}
}
3、优化方法说明:
源代码中,函数变量的定义是 short *sum, short *in1, short *in2, 改编后的代码函数变
量是 int *sum, const int *in1, const int *in2, 整数类型由 16 位改编成 32 位,这时使用内联指令“_add2”一次可以完成两组 16位整数的加法,效率提高一倍。注意这里还使用了关键字 const和内联指令_nassert优化源代码。
4、技巧:
用内联指令_add2、_mpyhl、_mpylh 完成两组 16 位数的加法和乘法,效率比单纯 16 位数的加法和乘法提高一倍。
1、源代码:
void fir_fxd1(short input[], short coefs[], short out[])
{ int i, j;
for (i = 0; i < 40; i++)
{
for (j = 0; j < 16; j++)
out[i*16+j]= coefs[j] * input[i + 15 - j];
}
}
2、改编后的代码:
void fir_fxd2(const short input[], const short coefs[], short out[])
{
int i, j;
for (i = 0; i < 40; i++)
{
for (j = 0; j < 16; j++)
out[i*16+j]= coefs[j] * input[i + 15 - j];
}
3、优化方法说明:
C6000 编译器如果确定两条指令是不相关的,则安排它们并行执行。 关键字 const可以
指定一个变量或者一个变量的存储单元保持不变。这有助于帮助编译器确定指令的不相关
性。例如上例中,源代码不能并行执行,而结果改编后的代码可以并行执行。
4、技巧:
使用 const 可以限定目标,确定存在于循环迭代中的存储器的不相关性。
五、 使用内联指令优化算法
1、源代码:
void vecsum(short *sum, short *in1, short *in2, unsigned int N)
{
int i;
for (i = 0; i < N; i++)
sum = in1 + in2;
}
2、改编后的代码:
void vecsum6(int *sum, const int *in1, const int *in2, unsigned int N)
{
int i;
int sz = N >> 2;
_nassert(N >= 20);
for (i = 0; i < sz; i += 2)
{
sum = _add2(in1 , in2);
sum[i+1] = _add2(in1[i+1], in2[i+1]);
}
}
3、优化方法说明:
源代码中,函数变量的定义是 short *sum, short *in1, short *in2, 改编后的代码函数变
量是 int *sum, const int *in1, const int *in2, 整数类型由 16 位改编成 32 位,这时使用内联指令“_add2”一次可以完成两组 16位整数的加法,效率提高一倍。注意这里还使用了关键字 const和内联指令_nassert优化源代码。
4、技巧:
用内联指令_add2、_mpyhl、_mpylh 完成两组 16 位数的加法和乘法,效率比单纯 16 位数的加法和乘法提高一倍。
六、if...else...语句的优化
实例(一)
1、源代码:
if (sub (ltpg, LTP_GAIN_THR1) <= 0)
{
adapt = 0;
}
else
{
if (sub (ltpg, LTP_GAIN_THR2) <= 0)
{
adapt = 1;
}
else
{ adapt = 2;
}
}
2、改编后的代码:
adapt = (ltpg>LTP_GAIN_THR1) + (ltpg>LTP_GAIN_THR2);
实列(二)
1、源代码:
if (adapt == 0)
{
if (filt>5443)
{
result = 0;
}
else
{
if (filt < 0)
{
result = 16384;
}
else
{
filt = _sshl (filt, 18)>>16; // Q15
result = _ssub (16384, _smpy(24660, filt)>>16);
}
}
}
else
{
result = 0;
}
2、改编后的代码:
filt1 = _sshl (filt, 18)>>16;
tmp = _smpy(24660, filt1)>>16;
result = _ssub(16384, tmp * (filt>=0));
result = result * (!((adapt!=0)||(filt>5443)));
实例(三)
1、源代码:
static Word16 saturate(Word32 L_var1)
{
Word16 swOut;
if (L_var1 > SW_MAX)
{
swOut = SW_MAX;
giOverflow = 1;
}
else if (L_var1 < SW_MIN)
{
swOut = SW_MIN;
giOverflow = 1;
}
else
swOut = (Word16) L_var1; /* automatic type conversion */
return (swOut);
}
2、改编后的代码:
static inline Word32 L_shl(Word32 a,Word16 b)
{
return ((Word32)((b) < 0 ? (Word32)(a) >> (-(b)) : _sshl((a),(b)))) ;
}
3、优化方法说明:
如果在循环中出现 if...else...语句,由于 if...else...语句中有跳转指令,而每个跳转指令有
5 个延迟间隙,因此程序执行时间延长;另外,循环内跳转也使软件流水受到阻塞。直接使
用逻辑判断语句可以去除不必要的跳转。例如在例 1 的源代码最多有两次跳转,而改编后不
存在跳转。例 2 和例 3同样也去掉了跳转。
4、技巧:
尽可能地用逻辑判断语句替代 if...else...语句,减少跳转语句。
七、数组最小值运算优化
1、源程序
dm = 0x7FFF;
for (j = 0; j < nsiz[m]; j = add(j, 1))
{
if (d[j] <= dm)
{
dm = d[j];
jj = j;
}
}
index[m] = jj;
2、优化后的程序
dm0 = dm1 = 0x7fff;
d0 = (Word16 *)&d[0];
d1 = (Word16 *)&d[1];
#pragma MUST_ITERATE(32,256,64);
for (j = 0; j < Nsiz; j+=2)
{
n0 = *d0;
d0 += 2;
n1 = *d1;
d1 += 2;
if (n0 <= dm0)
{
dm0 = n0;
jj0 = j;
}
if (n1 <= dm1)
{
dm1 = n1;
jj1 = j+1;
}
}
if (dm1 != dm0)
{
index[m] = (dm1 < dm0)? jj1:jj0;
}
else
{
index[m] = (jj1 > jj0)? jj1:jj0;
}
3、优化说明
求数组的最小值程序,优化时为了提高程序效率在一个循环之内计算 N=1,3,5..和
n=2,4,6...的最小值,然后在比较二者的大小以求得整个数组的最小值。
八、 循环内部存在 if判断程序的优化
1、源程序
for (k = 0; k < NB_PULSE; k++)
{
i = codvec[k];
j = sign;
index = mult(i, Q15_1_5);
track = sub(i, extract_l(L_shr(L_mult(index, 5), 1)));
if (j > 0)
{
if (i < l_subfr) code = add(code, 4096);
codvec[k] += (2 * L_SUBFR);
}
else
{
if (i < l_subfr) code = sub(code, 4096);
index = add(index, 16);
}
if (indx[track] < 0)
{
indx[track] = index;
}
else
{
if (((index ^ indx[track]) & 16) == 0)
{
if (sub(indx[track], index) <= 0)
{
indx[track] = shl((indx[track] & 16), 3)
+ shr(extract_l(L_mult((indx[track]&15), NB_POS)), 1) + (index & 15);
}
else
{ indx[track] = shl((index & 16), 3)
+ shr(extract_l(L_mult((index & 15),NB_POS)), 1) + (indx[track] & 15);
}
}
else
{
if (sub((indx[track] & 15), (index & 15)) <= 0)
{
indx[track] = shl((index & 16), 3)
+ shr(extract_l(L_mult((index & 15),NB_POS)), 1) + (indx[track] & 15)
}
else
{ indx[track] = shl((indx[track] & 16), 3)
+ shr(extract_l(L_mult((indx[track] & 15),NB_POS)), 1) + (index & 1
}
}
}
}
2、优化后的程序
for (k = 0; k < 8; k++)
{
i = codvec[k];
j = sign;
index = _smpy(i, 6554)>>16;
track = i - index*5;
con = (j > 0);
codvec[k] = codvec[k] + 110*con;
index = index + (!con)*16;
conn = (i < l_subfr);
cono = (j > 0)? 1:-1;
code = code + 4096*conn*cono;
n0 = index;
t0 = indx[track];
n1 = n0&16;
t1 = t0&16;
n2 = n0&15;
t2 = t0&15;
tmp0 = (_sshl(n1,19)>>16) + n2*NB_POS + t2;
tmp1 = (_sshl(t1,19)>>16) + t2*NB_POS + n2;
conp = (((n1 == t1)&&(t0 > n0))||((n1 != t1)&&(t2 <= n2)));
tmp = conp*tmp0 + (!conp)*tmp1;
if (t0 < 0)
indx[track] = n0;
else
indx[track] = tmp;
}
3、优化说明
源程序中在循环中含有许多的 if 结构,在优化时对 if 结构首先进行化简,再将化简后的 if结构用条件运算表达式进行改写,最后使循环可以 Pipeline。
九、 少量中值问题的优化
1、源程序
for (i = 0; i < n; i++)
{
max = -32767;
for (j = 0; j < n; j++)
{
if (sub (tmp2[j], max) >= 0)
{
max = tmp2[j];
ix = j;
}
}
tmp2[ix] = -32768;
tmp = ix;
}
2、优化后的程序
if (n0>n1) {temp=n0;n0=n1;n1=temp;}
if (n1>n2) {temp=n1;n1=n2;n2=temp;}
if (n2>n3) {temp=n2;n2=n3;n3=temp;}
if (n3>n4) {temp=n3;n3=n4;n4=temp;}
if (n0>n1) {temp=n0;n0=n1;n1=temp;}
if (n1>n2) {temp=n1;n1=n2;n2=temp;}
if (n2>n3) {temp=n2;n2=n3;n3=temp;}
if (n0>n1) {temp=n0;n0=n1;n1=temp;}
if (n1>n2) {return n1;}
3、优化说明
源程序也为一个求中值的问题,由于已知循环次数固定为 5,因此将循环展开使用 if语句直接求取中值。
十、 位操作优化
1、源程序
static Word16 Bin2int (Word16 no_of_bits, Word16 *bitstream)
{
Word16 value, i, bit;
value = 0;
for (i = 0; i < no_of_bits; i++)
{
value = shl (value, 1);
bit = *bitstream++;
if (sub (bit, BIT_1) == 0)
value = add (value, 1);
}
return (value);
}
for (i = 0; i < prmno[mode]; i++)
{
prm = Bin2int (bitno[mode], bits);
bits += bitno[mode];
}
2、优化后的程序
value = 0;
bitsp = bits;
bitnop= &bitno[mode][0];
j = *bitnop++;
j1 = *bitnop++;
j2 = *bitnop++;
j3 = *bitnop++;
j4 = *bitnop++;
_nassert(loop[mode]>=35);
for (i = 0; i < loop[mode]; i++)
{
value = value*2 + *bitsp++;
j--;
if (j == 0)
{
*prm++ = value;
value = 0;
j = j1;
j1 = j2;
j2 = j3;
j3 = j4;
j4 = *bitnop++;
}
}
3、优化说明
源程序按照数据位流定义取出参数,为双重循环结构,优化中采用重新根据位流的 bit
长度定义循环次数,化简为单重循环,然后优化循环,去除 boundary,使 pipeline 的数目最小。
1、源代码:
Word16 i;
for (i = 0; i < L; i++)
{
y = x;
}
2、改编代码:
(1)要求数组长度能被 2 整除
Word32 i;
Word32 temp;
int *p1 = (int *)&x[0];
int *q1 = (int *)&y[0];
for (i = 0; i < L/2; i++)
{
temp = *p1++;
*q1++ = temp;
}
(2)要求数组长度能被 4 整除
Word32 i;
Word32 temp1, temp2;
Word32 *pin1, *pin2, *pout1, *pout2;
pin1 = (Word32 *)&x[0];
pin2 = (Word32 *)&x[2];
pout1= (Word32 *)&y[0];
pout2= (Word32 *)&y[2];
for (i = 0; i < L/4; i++)
{
temp1 = *pin1;
temp2 = *pin2;
pin1+=2;
pin2+=2;
*pout1= temp1;
*pout2= temp2;
pout1+=2;
pout2+=2;
}
3、优化方法说明:
把一次循 拷贝一个 word16 的数改为一次循环拷贝 2 个 word16 或4 个 word16 的数。
4、技巧:
充分利用 c6xx 一次读取32 位数的特性,并利用一个指令周期能读取两个数据的特点。
十二、set_zero 程序的优化
1、源代码:
Word16 i;
for (i = 0; i < L; i++)
{
x = 0;
}
2、改编代码:
(1)数组长度能被 2 整除
Word32 i;
int *x1 = (int *)&x[0];
for (i = 0; i < L/2; i++)
{
*x1++ = 0;
}
(2)数组长度能被 4 整除
Word32 i;
int *x1 = (int *)&x[0];
int *x2 = (int *)&x[2];
for (i = 0; i < L/4; i++)
{
*x1 = 0;
*x2 = 0;
x1++;
x2++;
x1++;
x2++;
}
3、优化方法说明:
把一次循环为一个 word16 的数赋值改为一次为 2个或 4 个 word16 的数赋值。
4、技巧:
充分利用C6XX一次读取32位数的特点, 并利用一个指令周期能读取两个数据的特点。
十三、32bit数与 16bit 数相乘
1、源代码:
L_tmp0 = Mac_32_16(L_32, hi1, lo1, lo2);
2、改编代码:
L_tmp0=_sadd(_sadd(_smpyhl(hl32, lo2),
(_mpyus(hl32, lo2)>>16)<<1), L_32);
3、优化方法说明:
hl32 是32bit 的数, hi1 和 lo1 是 16bit的数, 且 hl32 = hi1<<16 + lo1 << 1 , 即 hi1 和 lo1分别是 hl32的高 16 位数和低 16 位数。 函数 Mac_32_16(L_32, hi1, lo1, lo2)实现
L_32 = L_32 + (hi1*lo2)<<1 + ((lo1*lo2)>>15)<<1
源代码是把一个 32 位的数拆成两个 16 位的数与一个 16 位的数相乘,优化后的代码不拆开 32 位的数,直接用 32 位的数与16 位的数相乘。运用这种方法必须保证 hl32 的最低一位数必须为 0,否则应用指令_clr(hl32, 0, 0)把最低位清零。
4、技巧:
源代码中的低 16 位数 lo1 是hl32 的低16 位右移一位得到的(留出一位符号位) 。在与lo2 相乘时又右移了 15 位,所以在改编代码中右移 16 位,并且是以无符号数与 lo2 相乘。
十四、32bit数与 32bit 数相乘
1、源代码:
L_tmp = Mac_32 (L_32, hi1, lo1, hi2, lo2);
2、改编代码:
L_tmp = _sadd(_sadd(_smpyh(hl1_32, hl2_32),
((_mpyhslu(hl1_32, hl2_32)>>16)<<1)+((_mpyhslu(hl2_32, hl1_32)>>16)<<1)), L_32);
3、优化方法说明:
两个 32位的数相乘,不必分成四个 16 位的数相乘,直接用 32 位相乘。其中:
hl1_32 = hi1<<16 + lo1<<1, hl2_32 = hi2 <<16 + lo2 <<1 。
源代码实现: L_32 = L_32 + (hi1*hi2)<<1 + ( (hi1*lo2)>>15 + (lo1*hi2)>>15) <<1
4、技巧:
低 16 位与高16 位相乘时,低 16 位使用的是无符号数。
十五、16 位除法的优化
1、源代码:
Word16 div_s (Word16 var1, Word16 var2) //实现 var1/var2
{
Word16 var_out = 0;
Word16 iteration;
Word32 L_num = (Word32)var1;
Word32 L_denom = (Word32)var2;
for (iteration = 0; iteration < 15; iteration++)
{
var_out <<= 1;
L_num <<= 1;
if (L_num >= L_denom)
{
L_num = L_sub (L_num, L_denom);
var_out = add (var_out, 1);
}
}
return (var_out);
}
2、改编代码:
Word16 div_s1 (Word16 var1, Word16 var2)
{
Word32 var1int;
Word32 var2int;
var1int = var1 << 16;
var2int = var2 << 15;
var1int = _subc(var1int,var2int);
var1int = _subc(var1int,var2int);
var1int = _subc(var1int,var2int);
var1int = _subc(var1int,var2int);
var1int = _subc(var1int,var2int);
var1int = _subc(var1int,var2int);
var1int = _subc(var1int,var2int);
var1int = _subc(var1int,var2int);
var1int = _subc(var1int,var2int);
var1int = _subc(var1int,var2int);
var1int = _subc(var1int,var2int);
var1int = _subc(var1int,var2int);
var1int = _subc(var1int,var2int);
var1int = _subc(var1int,var2int);
var1int = _subc(var1int,var2int);
return (var1int & 0xffff);
}
3、优化方法说明:
实现 16 位的除法,要求被除数 var1和除数 var2都是整数,且 var1<=var2。利用 C6XX特有的指令 subc,实现除法的循环移位相减操作。
4、技巧:
把被除数和除数都转换成 32 位数来操作,返回时取低 16 位数。
十六、C6X优化 inline 举例:
1、原程序:
for (i = LO_CHAN; i <= HI_CHAN; i++)
{
norm_shift = norm_l(st->ch_noise);
Ltmp = L_shl(st->ch_noise, norm_shift);
norm_shift1 = norm_l(st->ch_enrg);
Ltmp3 = L_shl1(st->ch_enrg, norm_shift1 - 1);
Ltmp2 = L_divide(Ltmp3, Ltmp);
Ltmp2 = L_shr(Ltmp2, 27 - 1 + norm_shift1 - norm_shift);
// * scaled as 27,4 *
if (Ltmp2 == 0)
Ltmp2 = 1;
Ltmp1 = fnLog10(Ltmp2);
Ltmp3 = L_add(Ltmp1, LOG_OFFSET - 80807124);
// * --ound(log10(2^4)*2^26 *
Ltmp2 = L_mult(TEN_S5_10, extract_h(Ltmp3));
if (Ltmp2 < 0)
Ltmp2 = 0;
// * 0.1875 scaled as 10,21 *
Ltmp1 = L_add(Ltmp2, CONST_0_1875_S10_21);
// * tmp / 0.375 2.667 scaled as 5,10, Ltmp is scaled 15,16 *
Ltmp = L_mult(extract_h(Ltmp1), CONST_2_667_S5_10);
ch_snr = extract_h(Ltmp);
}
2、优化后程序:
//因循环体太大,拆成两个循环并把相应的函数内嵌以使程序能 pipeline,
//用 L_div_tmp[]保存因拆分而产生的中间变量。
for (i = LO_CHAN; i <= HI_CHAN; i++)
{
//norm_shift = norm_l(st->ch_noise);
norm_shift = _norm(st->ch_noise);
Ltmp = _sshl(st->ch_noise, norm_shift);
//norm_shift1 = norm_l(st->ch_enrg);
norm_shift1 = _norm(st->ch_enrg);
//Ltmp3 = L_shl1(st->ch_enrg, norm_shift1 - 1);
LLtmp1 = st->ch_enrg;
LLtmp1 = LLtmp1 << (norm_shift1 + 7);
Ltmp3 = (Word32)(LLtmp1 >> 8);
Ltmp2 = IL_divide(Ltmp3, Ltmp);
//Ltmp2 = L_shr(Ltmp2, 27 - 1 + norm_shift1 - norm_shift);
Ltmp2 = (Ltmp2 >> (27 - 1 + norm_shift1 - norm_shift));
if (Ltmp2 == 0)
Ltmp2 = 1;
L_div_tmp = Ltmp2;
}
for (i = LO_CHAN; i <= HI_CHAN; i++)
{
Ltmp2 = L_div_tmp;
Ltmp1 = IfnLog10(Ltmp2);
//Ltmp3 = L_add(Ltmp1, LOG_OFFSET - 80807124);
Ltmp3 = _sadd(Ltmp1, LOG_OFFSET - 80807124);
//Ltmp2 = L_mult(TEN_S5_10, extract_h(Ltmp3));
Ltmp2 = _smpy(TEN_S5_10, (Ltmp3 >> 16));
if (Ltmp2 < 0)
Ltmp2 = 0;
Ltmp1 = _sadd(Ltmp2, CONST_0_1875_S10_21);
//Ltmp = L_mult(extract_h(Ltmp1), CONST_2_667_S5_10);
Ltmp = _smpy((Ltmp1 >> 16), CONST_2_667_S5_10);
//ch_snr = extract_h(Ltmp);
ch_snr = (Ltmp >> 16);
}
3、优化说明
观察上面这个循环,循环体本身比较大,且含有两个函数 L_divide()和 fnLog10() ,而 C62 内部只有 32 个寄存器,且有些寄存器是系统用的,如 B14、B15 这样循环体太大将会导致寄存器不够分配,从而导致系统编译器无法实现循环的 pipeline。
为了实现循环的 pipeline。我们需要把循环体进行拆分,拆分时要考虑以下几点:
(1) 、拆分成几个循环比较合适?在各个循环能 pipeline 的前提下,拆开的循环个数越少越好。这就要求尽可能让各个循环的运算量接近。
(2)考虑在什么地方把程序拆开比较合适?循环体里的数据流往往并不是单一的 ,
在拆开的断点处势必要用中间变量保存上次的循环运算结果,供以后的循环用。 适当的拆开循环体,使所需的中间变量越少越好。
(3)循环体中的函数调用必须定义成内嵌形式,含有函数调用的循环系统是无法使之pipeline 的;各个循环体中的判断分支机构不可太多,否则系统也无法使之 pipeline,为此应近可能把可以确定下来的分支确定下来,并尽可能用内嵌指令。
针对上面这个例子,考虑:
(1)为让各个循环的运算量大致相当,应把 L_divide()和 fnLog10()分到两个循环中去,从循环体大小上考虑,估计拆成两个循环比较合适。
(2)考虑在什么地方把程序拆开比较合适?在
if (Ltmp2 == 0)
Ltmp2 = 1;
后拆开,因为后面用到的数据只有 Ltmp2,故只需用一个数组保存每次循环的 Ltmp2 值即可。
(3) 循环体中的两处函数调用L_divide () 和fnLog10 () 都定义了其内嵌形式, IL_divide()和 IfnLog10() 。当把可以确定下来的分支作确定处理,并尽可能用内嵌指令后,该循环体中所剩的分支结构已很少,循环体可以 pipeline。优化前程 序用 2676 cycle,优化后用400 cycle。优化后两个子循环的 MII 分别为14和 6cycle。
一周热门 更多>