關於LM4F232通訊問題

2019-08-07 16:46发布

目前用LM4F的MCU寫 五個不同儀器的資料可以由五個UART(UART1、UART2、UART3、UART4、UART5)的Rx接收
後送給UART0的Rx收然後傳給電腦人機(BCB5)
UART0的部分是使用udma寫的
以下是我擷取的一部分晶片程式碼
// The number of SysTick ticks per second used for the SysTick interrupt.
//*****************************************************************************
#define SYSTICKS_PER_SECOND     100

//*****************************************************************************
// The size of the UART transmit and receive buffers.  They do not need to be
// the same size.
//*****************************************************************************
#define UART_TXBUF_SIZE        16
#define UART_RXBUF_SIZE        16

//*****************************************************************************
// The transmit and receive buffers used for the UART transfers.  There is one
// transmit buffer and a pair of recieve ping-pong buffers.
//*****************************************************************************
//static unsigned char g_ucTxBuf[UART_TXBUF_SIZE];
static unsigned char g_ucRxBuf1[UART_RXBUF_SIZE];
static unsigned char g_ucRxBuf2[UART_RXBUF_SIZE];
static unsigned char g_ucRxBuf3[UART_RXBUF_SIZE];
static unsigned char g_ucRxBuf4[UART_RXBUF_SIZE];
static unsigned char g_ucRxBuf5[UART_RXBUF_SIZE];
static unsigned char g_ucRxBuf6[UART_RXBUF_SIZE];
static unsigned char g_ucRxBuf7[UART_RXBUF_SIZE];
//static unsigned char k=0;
unsigned char uartTmpBuff[UART_RXBUF_SIZE+4+4];


void
UART1IntHandler(void)  //此中斷是做收資料與傳資料
{
    unsigned long ulStatus;
    char header[]="###B"; //辨識符號
    char tail[]="B%%%";
        //get interrupt status
        ulStatus = ROM_UARTIntStatus(UART1_BASE, true);
        //clear the asserted interrupts
        ROM_UARTIntClear(UART1_BASE, ulStatus);
        //FIFO data transfer
       
        if(ulStatus == UART_INT_RX)//接收中斷標幟
        {

                while(ROM_UARTCharsAvail(UART1_BASE)) //loop while there are chars
            {
                    g_ucRxBuf1[g_ulRxBuf1Count++] = ROM_UARTCharGetNonBlocking(UART1_BASE);
                    if(g_ulRxBuf1Count >= UART_RXBUF_SIZE)
                    {
                            g_ulRxBuf1Count = 0;

                            /*ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART0TX | UDMA_PRI_SELECT,
                                                       UDMA_MODE_BASIC, header,
                                                       (void *)(UART0_BASE + UART_O_DR),
                                                       3);
                            ROM_uDMAChannelEnable(UDMA_CHANNEL_UART0TX);*/

                            memcpy(uartTmpBuff,header,sizeof(header));
                            memcpy(uartTmpBuff+sizeof(header)-1,g_ucRxBuf1,sizeof(g_ucRxBuf1));
                            memcpy(uartTmpBuff+sizeof(header)+sizeof(g_ucRxBuf1)-1,tail,sizeof(tail));

                //通道傳輸設置
                            ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART0TX | UDMA_PRI_SELECT,
                                                       UDMA_MODE_BASIC, uartTmpBuff,
                                                       (void *)(UART0_BASE + UART_O_DR),
                                                       sizeof(uartTmpBuff));
                            ROM_uDMAChannelEnable(UDMA_CHANNEL_UART0TX);
                           
                    }
            }
        }
}
void
UART2IntHandler(void) //此中斷是做收資料與傳資料
{
        unsigned long ulStatus;
    char header[]="###C";
    char tail[]="C%%%";
        //get interrupt status
        ulStatus = ROM_UARTIntStatus(UART2_BASE, true);
        //clear the asserted interrupts
        ROM_UARTIntClear(UART2_BASE, ulStatus);
        //FIFO data transfer
        if(ulStatus == UART_INT_RX)
        {
            while(ROM_UARTCharsAvail(UART2_BASE)) //loop while there are chars
            {
                    g_ucRxBuf2[g_ulRxBuf2Count++]= ROM_UARTCharGetNonBlocking(UART2_BASE);
                    if(g_ulRxBuf2Count >= UART_RXBUF_SIZE)
                    {
                            g_ulRxBuf2Count = 0;

                            memcpy(uartTmpBuff,header,sizeof(header));
                            memcpy(uartTmpBuff+sizeof(header)-1,g_ucRxBuf2,sizeof(g_ucRxBuf2));
                            memcpy(uartTmpBuff+sizeof(header)+sizeof(g_ucRxBuf2)-1,tail,sizeof(tail));

                            ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART0TX | UDMA_PRI_SELECT,
                                                                               UDMA_MODE_BASIC, uartTmpBuff,
                                           (void *)(UART0_BASE + UART_O_DR),
                                            sizeof(uartTmpBuff));
                            ROM_uDMAChannelEnable(UDMA_CHANNEL_UART0TX);
                    }
            }
        }
}

void
InitUART0(void)
{
    // Enable the UART peripheral, and configure it to operate even if the CPU
    // is in sleep.
        ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UART0);
    ROM_GPIOPinConfigure(GPIO_PA0_U0RX);
    ROM_GPIOPinConfigure(GPIO_PA1_U0TX);
    ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

    // Configure the UART communication parameters.
    ROM_UARTConfigSetExpClk(UART0_BASE, ROM_SysCtlClockGet(), 115200,
                            UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
                            UART_CONFIG_PAR_NONE);

    // Set both the TX and RX trigger thresholds to 4.  This will be used by
    // the uDMA controller to signal when more data should be transferred.  The
    // uDMA TX and RX channels will be configured so that it can transfer 4
    // bytes in a burst when the UART is ready to transfer more data.
    ROM_UARTFIFOLevelSet(UART0_BASE, UART_FIFO_TX4_8, UART_FIFO_RX4_8);

    // Enable the UART for operation, and enable the uDMA interface for RX
    // channels.
    ROM_UARTEnable(UART0_BASE);
    ROM_UARTDMAEnable(UART0_BASE, UART_DMA_TX);


    // Put the attributes in a known state for the uDMA UART0TX channel.  These
    // should already be disabled by default.
    // uDMA通道屬性清除
    ROM_uDMAChannelAttributeDisable(UDMA_CHANNEL_UART0TX,     //選擇UART0 TX的DMA通道
                                    UDMA_ATTR_ALTSELECT |     //設置為主控制結構
                                    UDMA_ATTR_HIGH_PRIORITY | //普通優先級
                                    UDMA_ATTR_REQMASK);       //響應外設請求

    // Set the USEBURST attribute for the uDMA UART TX channel.  This will
    // force the controller to always use a burst when transferring data from
    // the TX buffer to the UART.  This is somewhat more effecient bus usage
    // than the default which allows single or burst transfers.
    //uDMA通道屬性始能
    ROM_uDMAChannelAttributeEnable(UDMA_CHANNEL_UART0TX, UDMA_ATTR_USEBURST); //選擇UART0 TX的DMA通道;設置觸發方式只有脈衝觸發有效

    // Configure the control parameters for the UART TX.  The uDMA UART TX
    // channel is used to transfer a block of data from a buffer to the UART.
    // The data size is 8 bits.  The source address increment is 8-bit bytes
    // since the data is coming from a buffer.  The destination increment is
    // none since the data is to be written to the UART data register.  The
    // arbitration size is set to 4, which matches the UART TX FIFO trigger
    // threshold.
    //uDMA通道控制設置
    ROM_uDMAChannelControlSet(UDMA_CHANNEL_UART0TX | UDMA_PRI_SELECT,
                              UDMA_SIZE_8 | UDMA_SRC_INC_8 | UDMA_DST_INC_NONE |
                              UDMA_ARB_4);
}

void
InitUARTs(void)
{
    // Enable the UART1 peripheral, and configure it to operate even if the CPU is in sleep.
        ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOC);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART1);
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UART1);
    ROM_GPIOPinConfigure(GPIO_PC4_U1RX);
    ROM_GPIOPinConfigure(GPIO_PC5_U1TX);
    ROM_GPIOPinTypeUART(GPIO_PORTC_BASE, GPIO_PIN_4 | GPIO_PIN_5);
    ROM_UARTConfigSetExpClk(UART1_BASE, ROM_SysCtlClockGet(), 9600, UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE);
    ROM_UARTFIFOLevelSet(UART1_BASE, UART_FIFO_TX2_8, UART_FIFO_RX2_8);
    ROM_UARTEnable(UART1_BASE);
    ROM_IntEnable(INT_UART1);
    ROM_UARTIntEnable(UART1_BASE, UART_INT_RX | UART_INT_RT);
}

int
main(void)
{
    static unsigned long ulPrevSeconds;
    volatile unsigned long ulLoop;
    // Enable lazy stacking for interrupt handlers.
    ROM_FPULazyStackingEnable();
    //clock 80M
    SysCtlClockSet(SYSCTL_SYSDIV_2_5 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);
    ROM_SysCtlPeripheralClockGating(true);

    // Enable the GPIO port that is used for the on-board LED.
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
    ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1);
    ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_2);

    // Configure SysTick to occur 100 times per second, to use as a time
    // reference.  Enable SysTick to generate interrupts.
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / SYSTICKS_PER_SECOND);
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();

    // Initialize the CPU usage measurement routine.
    //CPUUsageInit(ROM_SysCtlClockGet(), SYSTICKS_PER_SECOND, 2);

    // Enable the uDMA controller at the system level.  Enable it to continue
    // to run while the processor is in sleep.
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UDMA);

    // Enable the uDMA controller error interrupt.  This interrupt will occur
    // if there is a bus error during a transfer.
    ROM_IntEnable(INT_UDMAERR);

    // Enable the uDMA controller.
    ROM_uDMAEnable();

    // Point at the control table to use for channel control structures.
    ROM_uDMAControlBaseSet(ucControlTable);

    // Initialize the uDMA memory to memory transfers.
    //InitSWTransfer();

    // Initialize the uDMA UART transfers.
    ROM_IntMasterEnable();
    InitUART0();
    InitUARTs();

    UARTStdioInit(0);
    UARTprintf(" Start ");
    // Remember the current SysTick seconds count.
    ulPrevSeconds = g_ulSeconds;

    GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, 0);
    // Loop until the button is pressed.  The processor is put to sleep
    // in this loop so that CPU utilization can be measured.
    while(1)
    {
        // Check to see if one second has elapsed.  If so, the make some updates.

        if(g_ulSeconds != ulPrevSeconds)
        {
            // Turn on the LED as a heartbeat
            GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2);
            SysCtlDelay(SysCtlClockGet() / 3 /5);

            // Turn off the LED.
            GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0);
            SysCtlDelay(SysCtlClockGet() / 3 /5);
        }

        // Put the processor to sleep if there is nothing to do.  This allows
        // the CPU usage routine to measure the number of free CPU cycles.
        // If the processor is sleeping a lot, it can be hard to connect to
        // the target with the debugger.
        ROM_SysCtlSleep();

        // See if we have run long enough and exit the loop if so.
        if(g_ulSeconds >= 10)
        {
            break;
        }

    }

    // Indicate on the display that the example is stopped.
    UARTprintf(" Stopped ");

    // Loop forever with the CPU not sleeping, so the debugger can connect.
    while(1)
    {
        GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, GPIO_PIN_1);
        GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2);
        SysCtlDelay(SysCtlClockGet() / 3 /5);
        GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, 0);
        GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0);
        SysCtlDelay(SysCtlClockGet() / 3 /5);

    }
}

跟電腦人機連接的UART0鮑率是設定115200
其他五個UART的鮑率是19200

五個儀器會同時傳資料進晶片

晶片再傳給人機

我用BCB5寫人機介面

但是如果送進去晶片的資料量大一點

人機介面收到所解出來的資料就會錯很多

除錯除了快一個月了

無法確定是晶片的問題還是BCB5的問題

請問有高手可以指教嗎???

晶片這樣寫如果五組資料同時傳會不會造成資料錯亂呢?

BCB5收資料的部分我是用到六個timer去寫

一個timer專門收集資料

另外五個解五個儀器的資料

大致上是這樣

感激不盡 ><
友情提示: 此问题已得到解决,问题已经关闭,关闭后问题禁止继续编辑,回答。