1 项目背景 技术交流群:544453837、
在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数个点。
在同一平面内,到定点的距离等于定长的点的集合叫做圆。圆可以表示为集合{M||MO|=r},圆的标准方程是(x - a) ² + (y - b) ² = r ²。其中,o是圆心,r 是半径。
在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)2+(y-b)2=r2。
特别地,以原点为圆心,半径为r(r>0)的圆的标准方程为x2+y2=r2。
2 设计目标
通过VGA连接线,将显示器和教学板的VGA接口相连。连接示意图如下。
然后FPGA产生640*480分辨率(使用上表中的第一种分辨率),让显示器产生显示一幅图像。提示:显示器一般都会自适应功能,无须设置就能识别不同分辨率的图像。
图像的内容是:在屏幕的中央显示一个直径为100个像素的圆,圆内的颜 {MOD}为绿 {MOD},圆外的颜 {MOD}是白 {MOD},如下图所示。
上板效果图如下图所示(显示器不同,显示效果也会有差别,请注意)
1设计实现
1.1 顶层接口
新建目录:D:mdy_bookvga_exec1。在该目录中,新建一个名为vga_exec1.v的文件,并用GVIM打开,开始编写代码。
我们要实现的功能,概括起来就是FPGA产生VGA时序,即控制VGA_R4~R0、VGA_G5~G0、VGA_B4~B0、VGA_HSYNC和VGA_VSYNC,让显示器显示红 {MOD}。其中,VGA_HSYNC和VGA_VSYNC,FPGA可根据时序产生高低电平。而颜 {MOD}数据,由于是固定的红 {MOD},FPGA也能自己产生,不需要外部输入图像的数据。那么我们的FPGA工程,可以定义输出信号hys表示行同步,用输出信号vys表示场同步,定义一个16位的信号lcd_rgb,其中lcd_rgb[15:11]表示VGA_R4~0,、lcd_rgb[10:5]表示VGA_G5~0,、lcd_rgb[4:0]表示VGA_B4~0。
我们还需要时钟信号和复位信号来进行工程控制。
综上所述,我们这个工程需要五个信号,时钟clk,复位rst_n,场同步信号vys、行同步信号hys和RGB输出信号lcd_rgb。
将module的名称定义为vga_exec1。并且我们已经知道该模块有五个信号:clk、rst_n、lcd_hs、lcd_vs和lcd_rgb。为此,代码如下:
其中clk、rst_n是输入信号,lcd_hs、lcd_vs和lcd_rgb是输出信号,其中clk、rst_n、lcd_hs、lcd_vs的值是0或者1,一根线即可,lcd_rgb为16位位宽的,根据这些信息,我们补充输入输出端口定义。代码如下:
需要注意的是,输入进来的时钟clk是50MHz,而从分辨率参数表可知道,行单位的基准时钟是25MHz。为此我们需要根据50MHz来产生一个25 MHz的时钟,然后再用于产生VGA时序。
为了得到这个25M时钟,我们需要一个PLL。PLL可以认为是FPGA内的一个硬核,它的功能是根据输入的时钟,产生一个或多个倍频和分频后的输出时钟,同时可以调整这些输出时钟的相位、占空比等。
例如,输入进来是50M时钟,如果我需要一个100M时钟,那么从逻辑上、代码上是不可能产生的,我们就必须用到PLL来产生了。
整个工程的结构图如下。
PLL的生成方式过程,请看本案例的综合工程和上板一节的内容。
3.3 VGA 驱动模块设计
3.3.1 接口信号
在目录:D:mdy_bookvga_exec1中,建立一个vga_driver.v文件,并用GVIM打开,开始编写代码。
我们先分析功能。要控制显示器,让其产生红 {MOD},也就是让FPGA控制VGA_R0~4、VGA_G0~5、VGA_B0~4、VGA_VSYNC和VGA_HSYNC信号。那么VGA驱动模块,可以定义输出信号hys表示行同步,用输出信号vys表示场同步,定义一个16位的信号lcd_rgb,其中lcd_rgb[15:11]表示VGA_R4~0,、lcd_rgb[10:5]表示VGA_G5~0,、lcd_rgb[4:0]表示VGA_B4~0。
同时该模块的工作时钟为25M,同时需要一个复位信号。
综上所述,我们这个模块需要五个信号,25M时钟clk,复位rst_n,场同步信号vys、行同步信号hys和RGB输出信号lcd_rgb。
将module的名称定义为vga_driver。并且我们已经知道该模块有五个信号:clk、rst_n、hys、vys和lcd_rgb。为此,代码如下:
其中clk、rst_n是输入信号,hys、vys和lcd_rgb是输出信号,其中clk、rst_n、hys、vys的值是0或者1,一根线即可,lcd_rgb为16位位宽的,根据这些信息,我们补充输入输出端口定义。代码如下:
3.3.2 信号设计
我们先设计场同步信号hys,VGA时序中的场同步信号,其时序图如下:
hys就是一个周期性地高低变化的脉冲。我们使用的是下表中的第一种分辨率,也就是同步脉冲a的时间是96个时钟周期,而显示后沿b是48个时钟周期,显示时序c是640个时钟周期,显示前沿是16个时钟周期,一共是800个时钟周期。
将时间信号填入图中,更新后的时序图如下:
很显然,我们需要1个计数器来产生这个时序,我们将该计数器命名为h_cnt。由于hys是不停地产生的,那么h_cnt就是不停地计数,每个时钟都要计数器,所以认为该计数器的加1条件为“1”,可写成:assign add_h_cnt = 1。从上图可知,该计数器的周期是800。综上所述,该计数器的代码如下:
有了计数器h_cnt,那么hys信号就有了对齐的对象。从时序图可以发现, hys有两个变化点,一个是h_cnt数到96个时,由0变1;另一个是当h_cnt数到800个时,由1变0。所以,场同步信号的代码如下:
接下来设计vys信号。该信号的时序图如下所示。
vys就是一个周期性地高低变化的脉冲。我们使用的是表中的第一种分辨率,查询表可知,同步脉冲a的时间是2行的时间,而显示后沿b是33行,显示时序c是480行,显示前沿是10行,一共是525行。其中,一“行”结束,也就是h_cnt数完了。
将时间信号填入图中,更新后的时序图如下:
有了计数器v_cnt,那么vys信号就有了对齐的对象。从时序图可以发现, vys有两个变化点,一个是v_cnt数到2个时,由0变1;另一个是当h_cnt数到525个时,由1变0。所以,场同步信号的代码如下:
最后我们还有一个信号需要设计,那就是lcd_rgb信号。
我们在显示器中一共要显示两种颜 {MOD}:绿 {MOD}和白 {MOD}。lcd_rgb等于16’b00000_111111_00000时表示绿 {MOD};lcd_rgb等于16’b11111_111111_11111时表示白 {MOD}。还要注意的是,在非显示区域,lcd_rgb的值要为0,才能正确显示。我们现在要仔细区分,在什么时候分别输出上面的值。
图像分成两部分:圆内和圆外。圆外显示白 {MOD},圆内显示绿 {MOD}。所以我们进一步分析,如何知道是圆内还是圆外呢?我们需要用到圆的定义公式:(x-a)2+(y-b)2=r2。自然地,当(x-a)2+(y-b)22的区域是圆内,(x-a)2+(y-b)2>=r2的区域就是圆外。
圆的原理和公式是初中的知识,非常简单,我们可以认为这个公式就是一个算法,关键的是我们如何使用FPGA来实现这个算法。常听到有人说,学FPGA工具是很简单的,算法才是最重要的。对于这一点,我不敢苟同。
有读者一听到算法,就觉得很高大上。其实算法就是解决某个问题的数学公式,简单的就是一个加法运算,例如求和、求平均数等,再复杂一些就是FFT等。要创造、发明、改进一套算法很难,这些真是需要一些数学功底很好的高材生才能做的事,需要天赋,训练也训练不出来。我们更多地找到算法、读懂算法、实现算法、解决问题。我们学习FPGA,学习怎么把各种算法用FPGA实现,这是比较实现可行的目标(当然,这是笔者基于自身水平而自定的目标哈,天外有天,人外有人,厉害的人物要忽略这建议)。
现在我们要用FPGA实现算法(x-a)2+(y-b)22,我们应该如何考虑呢?我们重要的是先搞清楚公式里各个元素是什么,在FPGA里面怎么表示。
首先看r。r是圆的半径,根据功能要求,我们显示的圆的直径是100个像素,所以r的值应该为50。
其次看a和b。a和b是圆心的坐标。我们要在屏幕的中心显示一个圆,中间位置就是行列的中间值,所以a的值为640/2=320,b的值为480/2=240。
最后我们再来看x和y。x和y是现时屏幕上显示的坐标。在屏幕中x的范围是0~639,y的范围是0~479,最左上角的值为(0,0),最右下角的坐标是(639,479)。现在FPGA的信号中没有x和y,但有相似的信号h_cnt和v_cnt,我们想办法将h_cnt和v_cnt表示x和y。
考虑到VGA时序中的同步脉冲和显示前沿的因素,当h_cnt=96+48,v_cnt=2+33时,才表示x=0和y=0。所以用h_cnt和v_cnt来表示x和y,则有x = h_cnt-96-48,y=v_cnt-2-33。
用distance表示距离的平方,则有distance = (x-a)*(x-a) + (y-b)*(y-b) = (h_cnt-96-48 -320) *(h_cnt-96-48-320) +(v_cnt-2-33 -240) *(v_cnt-2-33 -240)
如果distance小于r2=(50)2=2500 ,说明在圆内,否则在圆外。
显示区域:(h_cnt >=(96+48)&& h_cnt <</span>(96+48+640)),并且(v_cnt>=(2+33) && v_cnt<</span>(2+33+480))
绿 {MOD}区域:distance < 2500
白 {MOD}区域:在显示区域中,非绿 {MOD}区域的,就是白 {MOD}区域。
非显示区域:显示区域之外的,就是非显示区域。
我们可以设计几个信号来表示这些区域。显示区域用valid_area=1表示,红 {MOD}区域用red_area=1表示,绿 {MOD}区域用green_area=1表示。可得到代码如下:
有了green_area和valid_area后,设计lcd_rgb就好办了。
非显示区域(valid_area=0),lcd_rgb输出“16’b0”;
显示区域(valid_area)中的绿 {MOD}区域(green_area=1),lcd_rgb输出“16’b00000_111111_00000”;
显示区域(valid_area)中的非绿 {MOD}区域(green_area=0),lcd_rgb输出“16’b11111_111111_11111”。
则可以写出代码如下:
3.3.3 信号定义
接下来定义信号类型。
h_cnt是用always产生的信号,因此类型为reg。h_cnt计数的最大值为800,需要用10根线表示,即位宽是10位。因此代码如下:
add_h_cnt和end_h_cnt都是用assign方式设计的,因此类型为wire。并且其值是0或者1,1个线表示即可。因此代码如下:
v_cnt是用always产生的信号,因此类型为reg。v_cnt计数的最大值为525,需要用10根线表示,即位宽是10位。因此代码如下:
add_v_cnt和end_v_cnt都是用assign方式设计的,因此类型为wire。并且其值是0或者1,1根线表示即可。因此代码如下:
lcd_rgb是用always方式设计的,因此类型为reg。并且它的位宽是16位,16根线表示即可。因此代码如下:
hys和vys是用always方式设计的,因此类型为reg。并且其值是0或1,需要1根线表示即可。因此代码如下:
distance是用always方式设计的,因此类型为reg。其位宽为20位,需要20根线表示。因此代码如下:
valid_area和green_area是用always方式设计的,因此类型为reg。并且其值是0或1,用一根线表示即可。因此代码如下:
3.4 顶层模块设计
3.4.1 例化子模块
例化PLL IP核的代码
例化驱动模块的代码
3.4.2 信号定义
clk_0是在例化文件中,因此类型为wire。并且其值是0或1,用一根线表示即可。因此代码如下:
lcd_sh和lcd_vs是在例化文件中,因此类型为wire。并且其值是0或1,用一根线表示即可。因此代码如下:
lcd_rgb是在例化文件中,因此类型为wire。它的位宽是16位的,用16根线表示即可。因此代码如下:
4 综合与上板
4.1 新建工程
首先在d盘中创建名为“vga_exec1”的工程文件夹,将写的代码命名为“vga_exec1.v”,顶层模块名为“vga_exec1”,例化文件命名为“vga_driver.v”。
然后打开Quartus Ⅱ,点击File下拉列表中的New Project Wzard...新建工程选项。
3.在出现的界面中直接点击最下方的“Next”。
4.之后出现的是工程文件夹、工程名、顶层模块名设置界面。按照之前的命名进行填写,第一栏选择工程文件夹“vga_exec1”,第二栏选择工程文件“vga_exec1.v”,最后一栏选择顶层模块名“vga_exec1”,然后点击”Next”,在出现的界面选择emptyproject。
5.之后是文件添加界面。在上方一栏中添加之前写的”vga_driver.v和vga_exec1.v”文件和生成的“my_pll.v”,点击右侧的“Add”按钮,之后文件还会出现在大方框中,之后点击“Next”。
器件型号选择界面。在“Device family”处选择Cyclone ⅣE,在“Available devices”处选择EP4CE15F23C8,然后点击“Next”。
EDA工具界面。该页面用默认的就行,直接点击最下方“Next”。
8.之后出现的界面是我们前面的设置的总结,确认没有错误后点击“Finish”。
4.2 生成PLL IP核
新建工程后,就要生成PLL IP核。本节的PLL生成过程,与案例“VGA显示颜 {MOD}”第四点综合工程和上板中的PLL内容一致,注意其中的地址有不同。
4.3 综合
1.新建工程步骤完成后,就会出现以下界面。在“Project Navigator”下选中要编译的文件,点击上方工具栏中“StartCompilation”编译按钮(蓝 {MOD}三角形)。
2.编译成功后会出现以下界面,点击“OK”。
4.4 配置管脚
在菜单栏中,选中Assignments,然后选择Pin Planner,就会弹出配置管脚的窗口。
在配置窗口最下方中的location一列,参考下表中最右两列配置好FPGA管脚。
配置完成后,关闭Pin Planner,软件自动会保存管脚配置信息。
4.5 再次综合
在菜单栏中,选中Processing,然后选择Start Compilation,再次对整个工程进行编译和综合。
出现上面的界面,就说明编译综合成功。
4.6 连接开发板
图中,下载器接入电脑USB接口,电源接入电源,vga线连接显示器,然后摁下电源开关,看到开发板灯亮。
4.7 上板
1.双击Tasks一栏中”Program Device”。
2.会出现如下界面,点击add file添加.sof文件,在右侧点击“Start”,会在上方的“Progress”处显示进度。
3.进度条中提示成功后,即可在显示器上观察到相应的现象。
一周热门 更多>