已经知道是用的51单片机,通过接收串口数据知道以下几组数据:
aa c1 2a 45 42 bb ----------------第一组
aa d1 30 32 30 30 30 31 2a 46 38 bb----------第二组
aa c7 2a 45 44 bb ------------------第三组
AA C6 30 30 30 31 30 30 30 30 30 30 30 31 30 30 30 30 30 30 30 31 30 30 30 30 30 30 30 31 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 32 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 2A 45 45 BB --------第四组
AA C6 30 30 30 31 30 30 30 30 30 30 30 31 30 30 30 30 30 31 30 30 30 30 30 30 30 30 30 31 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 32 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 2A 45 45 BB ---------第五组
在论坛中和其它网站找到几种CRC校检工具,不知道何故校出来的结果各不相同,自己本身就不知道什么校检,求高手能看出来这个是用什么校检的吗?为什么CRC校检的结果各不相同呢?
几个小CRC工具打包如下:
crc.rar
(728.69 KB, 下载次数: 12)
2013-1-6 21:06 上传
点击文件名下载附件
Copyright (c) 2005, Joerg Wunsch
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name of the copyright holders nor the names of
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. */
/* $Id: crc16.h,v 1.2.2.1 2006/04/19 20:35:54 joerg_wunsch Exp $ */
#ifndef _UTIL_CRC16_H_
#define _UTIL_CRC16_H_
#include <stdint.h>
/** defgroup util_crc <util/crc16.h>: CRC Computations
code#include <util/crc16.h>endcode
This header file provides a optimized inline functions for calculating
cyclic redundancy checks (CRC) using common polynomials.
par References:
par
See the Dallas Semiconductor app note 27 for 8051 assembler example and
general CRC optimization suggestions. The table on the last page of the
app note is the key to understanding these implementations.
par
Jack Crenshaw's "Implementing CRCs" article in the January 1992 isue of e
Embedded e Systems e Programming. This may be difficult to find, but it
explains CRC's in very clear and concise terms. Well worth the effort to
obtain a copy.
A typical application would look like:
code
// Dallas iButton test vector.
uint8_t serno[] = { 0x02, 0x1c, 0xb8, 0x01, 0, 0, 0, 0xa2 };
int
checkcrc(void)
{
uint8_t crc = 0, i;
for (i = 0; i < sizeof serno / sizeof serno[0]; i++)
crc = _crc_ibutton_update(crc, serno);
return crc; // must be 0
}
endcode
*/
/** ingroup util_crc
Optimized CRC-16 calculation.
Polynomial: x^16 + x^15 + x^2 + 1 (0xa001)<br>
Initial value: 0xffff
This CRC is normally used in disk-drive controllers.
The following is the equivalent functionality written in C.
code
uint16_t
crc16_update(uint16_t crc, uint8_t a)
{
int i;
crc ^= a;
for (i = 0; i < 8; ++i)
{
if (crc & 1)
crc = (crc >> 1) ^ 0xA001;
else
crc = (crc >> 1);
}
return crc;
}
endcode */
static __inline__ uint16_t
_crc16_update(uint16_t __crc, uint8_t __data)
{
uint8_t __tmp;
uint16_t __ret;
__asm__ __volatile__ (
"eor %A0,%2" " "
"mov %1,%A0" " "
"swap %1" " "
"eor %1,%A0" " "
"mov __tmp_reg__,%1" " "
"lsr %1" " "
"lsr %1" " "
"eor %1,__tmp_reg__" " "
"mov __tmp_reg__,%1" " "
"lsr %1" " "
"eor %1,__tmp_reg__" " "
"andi %1,0x07" " "
"mov __tmp_reg__,%A0" " "
"mov %A0,%B0" " "
"lsr %1" " "
"ror __tmp_reg__" " "
"ror %1" " "
"mov %B0,__tmp_reg__" " "
"eor %A0,%1" " "
"lsr __tmp_reg__" " "
"ror %1" " "
"eor %B0,__tmp_reg__" " "
"eor %A0,%1"
: "=r" (__ret), "=d" (__tmp)
: "r" (__data), "0" (__crc)
: "r0"
);
return __ret;
}
/** ingroup util_crc
Optimized CRC-XMODEM calculation.
Polynomial: x^16 + x^12 + x^5 + 1 (0x1021)<br>
Initial value: 0x0
This is the CRC used by the Xmodem-CRC protocol.
The following is the equivalent functionality written in C.
code
uint16_t
crc_xmodem_update (uint16_t crc, uint8_t data)
{
int i;
crc = crc ^ ((uint16_t)data << 8);
for (i=0; i<8; i++)
{
if (crc & 0x8000)
crc = (crc << 1) ^ 0x1021;
else
crc <<= 1;
}
return crc;
}
endcode */
static __inline__ uint16_t
_crc_xmodem_update(uint16_t __crc, uint8_t __data)
{
uint16_t __ret; /* %B0:%A0 (alias for __crc) */
uint8_t __tmp1; /* %1 */
uint8_t __tmp2; /* %2 */
/* %3 __data */
__asm__ __volatile__ (
"eor %B0,%3" " " /* crc.hi ^ data */
"mov __tmp_reg__,%B0" " "
"swap __tmp_reg__" " " /* swap(crc.hi ^ data) */
/* Calculate the ret.lo of the CRC. */
"mov %1,__tmp_reg__" " "
"andi %1,0x0f" " "
"eor %1,%B0" " "
"mov %2,%B0" " "
"eor %2,__tmp_reg__" " "
"lsl %2" " "
"andi %2,0xe0" " "
"eor %1,%2" " " /* __tmp1 is now ret.lo. */
/* Calculate the ret.hi of the CRC. */
"mov %2,__tmp_reg__" " "
"eor %2,%B0" " "
"andi %2,0xf0" " "
"lsr %2" " "
"mov __tmp_reg__,%B0" " "
"lsl __tmp_reg__" " "
"rol %2" " "
"lsr %B0" " "
"lsr %B0" " "
"lsr %B0" " "
"andi %B0,0x1f" " "
"eor %B0,%2" " "
"eor %B0,%A0" " " /* ret.hi is now ready. */
"mov %A0,%1" " " /* ret.lo is now ready. */
: "=d" (__ret), "=d" (__tmp1), "=d" (__tmp2)
: "r" (__data), "0" (__crc)
: "r0"
);
return __ret;
}
/** ingroup util_crc
Optimized CRC-CCITT calculation.
Polynomial: x^16 + x^12 + x^5 + 1 (0x8408)<br>
Initial value: 0xffff
This is the CRC used by PPP and IrDA.
See RFC1171 (PPP protocol) and IrDA IrLAP 1.1
ote Although the CCITT polynomial is the same as that used by the Xmodem
protocol, they are quite different. The difference is in how the bits are
shifted through the alorgithm. Xmodem shifts the MSB of the CRC and the
input first, while CCITT shifts the LSB of the CRC and the input first.
The following is the equivalent functionality written in C.
code
uint16_t
crc_ccitt_update (uint16_t crc, uint8_t data)
{
data ^= lo8 (crc);
data ^= data << 4;
return ((((uint16_t)data << 8) | hi8 (crc)) ^ (uint8_t)(data >> 4)
^ ((uint16_t)data << 3));
}
endcode */
static __inline__ uint16_t
_crc_ccitt_update (uint16_t __crc, uint8_t __data)
{
uint16_t __ret;
__asm__ __volatile__ (
"eor %A0,%1" " "
"mov __tmp_reg__,%A0" " "
"swap %A0" " "
"andi %A0,0xf0" " "
"eor %A0,__tmp_reg__" " "
"mov __tmp_reg__,%B0" " "
"mov %B0,%A0" " "
"swap %A0" " "
"andi %A0,0x0f" " "
"eor __tmp_reg__,%A0" " "
"lsr %A0" " "
"eor %B0,%A0" " "
"eor %A0,%B0" " "
"lsl %A0" " "
"lsl %A0" " "
"lsl %A0" " "
"eor %A0,__tmp_reg__"
: "=d" (__ret)
: "r" (__data), "0" (__crc)
: "r0"
);
return __ret;
}
/** ingroup util_crc
Optimized Dallas (now Maxim) iButton 8-bit CRC calculation.
Polynomial: x^8 + x^5 + x^4 + 1 (0x8C)<br>
Initial value: 0x0
See http://www.maxim-ic.com/appnotes.cfm/appnote_number/27
The following is the equivalent functionality written in C.
code
uint8_t
_crc_ibutton_update(uint8_t crc, uint8_t data)
{
uint8_t i;
crc = crc ^ data;
for (i = 0; i < 8; i++)
{
if (crc & 0x01)
crc = (crc >> 1) ^ 0x8C;
else
crc >>= 1;
}
return crc;
}
endcode
*/
static __inline__ uint8_t
_crc_ibutton_update(uint8_t __crc, uint8_t __data)
{
uint8_t __i, __pattern;
__asm__ __volatile__ (
" eor %0, %4" " "
" ldi %1, 8" " "
" ldi %2, 0x8C" " "
"1: bst %0, 0" " "
" lsr %0" " "
" brtc 2f" " "
" eor %0, %2" " "
"2: dec %1" " "
" brne 1b" " "
: "=r" (__crc), "=d" (__i), "=d" (__pattern)
: "0" (__crc), "r" (__data));
return __crc;
}
#endif /* _UTIL_CRC16_H_ */
看看AVRGCC的CRC头文件
非常感谢楼上。
CRC-16校验码计算方法:
常用查表法和计算法。计算方法一般都是:
(1)、预置1个16位的寄存器为十六进制FFFF(即全为1),称此寄存器为CRC寄存器;
(2)、把第一个8位二进制数据(既通讯信息帧的第一个字节)与16位的CRC寄存器的低
8位相异或,把结果放于CRC寄存器,高八位数据不变;
(3)、把CRC寄存器的内容右移一位(朝低位)用0填补最高位,并检查右移后的移出位;
(4)、如果移出位为0:重复第3步(再次右移一位);如果移出位为1,CRC寄存器与多
项式A001(1010 0000 0000 0001)进行异或;
(5)、重复步骤3和4,直到右移8次,这样整个8位数据全部进行了处理;
(6)、重复步骤2到步骤5,进行通讯信息帧下一个字节的处理;
(7)、将该通讯信息帧所有字节按上述步骤计算完成后,得到的16位CRC寄存器的高、低
字节进行交换;
(8)、最后得到的CRC寄存器内容即为:CRC码。
以上计算步骤中的多项式A001是8005按位颠倒后的结果。
查表法是将移位异或的计算结果做成了一个表,就是将0~256放入一个长度为16位的寄存器中的低八位,高八位填充0,然后将该寄存器与多项式0XA001按照上述3、4步骤,直到八位全部移出,最后寄存器中的值就是表格中的数据,高八位、低八位分别单独一个表。
参考我上边的回复。
你提到的算法是Modbus用的16Bit CRC。
width=16 poly=0x8005 init=0xffff refin=true refout=true xorout=0x0000 check=0x4b37 name="MODBUS"
实际应用中有很多16Bit的CRC,各不相同。
一周热门 更多>