求教:串口接收数据校检使用论坛中得当CRC都不对?

2020-02-01 16:22发布

已经知道是用的51单片机,通过接收串口数据知道以下几组数据:
aa c1 2a 45 42 bb         ----------------第一组
aa d1 30 32 30 30 30 31 2a 46 38 bb----------第二组
aa c7 2a 45 44 bb        ------------------第三组
AA C6 30 30 30 31 30 30 30 30 30 30 30 31 30 30 30 30 30 30 30 31 30 30 30 30 30 30 30 31 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 32 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 2A 45 45 BB   --------第四组

AA C6 30 30 30 31 30 30 30 30 30 30 30 31 30 30 30 30 30 31 30 30 30 30 30 30 30 30 30 31 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 32 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 2A 45 45 BB   ---------第五组
在论坛中和其它网站找到几种CRC校检工具,不知道何故校出来的结果各不相同,自己本身就不知道什么校检,求高手能看出来这个是用什么校检的吗?为什么CRC校检的结果各不相同呢?
几个小CRC工具打包如下:
crc.rar (728.69 KB, 下载次数: 12) 2013-1-6 21:06 上传 点击文件名下载附件
友情提示: 此问题已得到解决,问题已经关闭,关闭后问题禁止继续编辑,回答。
该问题目前已经被作者或者管理员关闭, 无法添加新回复
10条回答
yklstudent
1楼-- · 2020-02-01 22:20
/* Copyright (c) 2002, 2003, 2004  Marek Michalkiewicz
   Copyright (c) 2005, Joerg Wunsch
   All rights reserved.

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are met:

   * Redistributions of source code must retain the above copyright
     notice, this list of conditions and the following disclaimer.

   * Redistributions in binary form must reproduce the above copyright
     notice, this list of conditions and the following disclaimer in
     the documentation and/or other materials provided with the
     distribution.

   * Neither the name of the copyright holders nor the names of
     contributors may be used to endorse or promote products derived
     from this software without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  POSSIBILITY OF SUCH DAMAGE. */

/* $Id: crc16.h,v 1.2.2.1 2006/04/19 20:35:54 joerg_wunsch Exp $ */

#ifndef _UTIL_CRC16_H_
#define _UTIL_CRC16_H_

#include <stdint.h>

/** defgroup util_crc <util/crc16.h>: CRC Computations
    code#include <util/crc16.h>endcode

    This header file provides a optimized inline functions for calculating
    cyclic redundancy checks (CRC) using common polynomials.

    par References:

    par

    See the Dallas Semiconductor app note 27 for 8051 assembler example and
    general CRC optimization suggestions. The table on the last page of the
    app note is the key to understanding these implementations.

    par

    Jack Crenshaw's "Implementing CRCs" article in the January 1992 isue of e
    Embedded e Systems e Programming. This may be difficult to find, but it
    explains CRC's in very clear and concise terms. Well worth the effort to
    obtain a copy.

    A typical application would look like:

    code
    // Dallas iButton test vector.
    uint8_t serno[] = { 0x02, 0x1c, 0xb8, 0x01, 0, 0, 0, 0xa2 };

    int
    checkcrc(void)
    {
        uint8_t crc = 0, i;

        for (i = 0; i < sizeof serno / sizeof serno[0]; i++)
            crc = _crc_ibutton_update(crc, serno);

        return crc; // must be 0
    }
    endcode
*/

/** ingroup util_crc
    Optimized CRC-16 calculation.

    Polynomial: x^16 + x^15 + x^2 + 1 (0xa001)<br>
    Initial value: 0xffff

    This CRC is normally used in disk-drive controllers.

    The following is the equivalent functionality written in C.

    code
    uint16_t
    crc16_update(uint16_t crc, uint8_t a)
    {
        int i;

        crc ^= a;
        for (i = 0; i < 8; ++i)
        {
            if (crc & 1)
                crc = (crc >> 1) ^ 0xA001;
            else
                crc = (crc >> 1);
        }

        return crc;
    }

    endcode */

static __inline__ uint16_t
_crc16_update(uint16_t __crc, uint8_t __data)
{
        uint8_t __tmp;
        uint16_t __ret;

        __asm__ __volatile__ (
                "eor %A0,%2" " "
                "mov %1,%A0" " "
                "swap %1" " "
                "eor %1,%A0" " "
                "mov __tmp_reg__,%1" " "
                "lsr %1" " "
                "lsr %1" " "
                "eor %1,__tmp_reg__" " "
                "mov __tmp_reg__,%1" " "
                "lsr %1" " "
                "eor %1,__tmp_reg__" " "
                "andi %1,0x07" " "
                "mov __tmp_reg__,%A0" " "
                "mov %A0,%B0" " "
                "lsr %1" " "
                "ror __tmp_reg__" " "
                "ror %1" " "
                "mov %B0,__tmp_reg__" " "
                "eor %A0,%1" " "
                "lsr __tmp_reg__" " "
                "ror %1" " "
                "eor %B0,__tmp_reg__" " "
                "eor %A0,%1"
                : "=r" (__ret), "=d" (__tmp)
                : "r" (__data), "0" (__crc)
                : "r0"
        );
        return __ret;
}

/** ingroup util_crc
    Optimized CRC-XMODEM calculation.

    Polynomial: x^16 + x^12 + x^5 + 1 (0x1021)<br>
    Initial value: 0x0

    This is the CRC used by the Xmodem-CRC protocol.

    The following is the equivalent functionality written in C.

    code
    uint16_t
    crc_xmodem_update (uint16_t crc, uint8_t data)
    {
        int i;

        crc = crc ^ ((uint16_t)data << 8);
        for (i=0; i<8; i++)
        {
            if (crc & 0x8000)
                crc = (crc << 1) ^ 0x1021;
            else
                crc <<= 1;
        }

        return crc;
    }
    endcode */

static __inline__ uint16_t
_crc_xmodem_update(uint16_t __crc, uint8_t __data)
{
    uint16_t __ret;             /* %B0:%A0 (alias for __crc) */
    uint8_t __tmp1;             /* %1 */
    uint8_t __tmp2;             /* %2 */
                                /* %3  __data */

    __asm__ __volatile__ (
        "eor    %B0,%3"          " " /* crc.hi ^ data */
        "mov    __tmp_reg__,%B0" " "
        "swap   __tmp_reg__"     " " /* swap(crc.hi ^ data) */

        /* Calculate the ret.lo of the CRC. */
        "mov    %1,__tmp_reg__"  " "
        "andi   %1,0x0f"         " "
        "eor    %1,%B0"          " "
        "mov    %2,%B0"          " "
        "eor    %2,__tmp_reg__"  " "
        "lsl    %2"              " "
        "andi   %2,0xe0"         " "
        "eor    %1,%2"           " " /* __tmp1 is now ret.lo. */

        /* Calculate the ret.hi of the CRC. */
        "mov    %2,__tmp_reg__"  " "
        "eor    %2,%B0"          " "
        "andi   %2,0xf0"         " "
        "lsr    %2"              " "
        "mov    __tmp_reg__,%B0" " "
        "lsl    __tmp_reg__"     " "
        "rol    %2"              " "
        "lsr    %B0"             " "
        "lsr    %B0"             " "
        "lsr    %B0"             " "
        "andi   %B0,0x1f"        " "
        "eor    %B0,%2"          " "
        "eor    %B0,%A0"         " " /* ret.hi is now ready. */
        "mov    %A0,%1"          " " /* ret.lo is now ready. */
        : "=d" (__ret), "=d" (__tmp1), "=d" (__tmp2)
        : "r" (__data), "0" (__crc)
        : "r0"
    );
    return __ret;
}

/** ingroup util_crc
    Optimized CRC-CCITT calculation.

    Polynomial: x^16 + x^12 + x^5 + 1 (0x8408)<br>
    Initial value: 0xffff

    This is the CRC used by PPP and IrDA.

    See RFC1171 (PPP protocol) and IrDA IrLAP 1.1

    ote Although the CCITT polynomial is the same as that used by the Xmodem
    protocol, they are quite different. The difference is in how the bits are
    shifted through the alorgithm. Xmodem shifts the MSB of the CRC and the
    input first, while CCITT shifts the LSB of the CRC and the input first.

    The following is the equivalent functionality written in C.

    code
    uint16_t
    crc_ccitt_update (uint16_t crc, uint8_t data)
    {
        data ^= lo8 (crc);
        data ^= data << 4;

        return ((((uint16_t)data << 8) | hi8 (crc)) ^ (uint8_t)(data >> 4)
                ^ ((uint16_t)data << 3));
    }
    endcode */

static __inline__ uint16_t
_crc_ccitt_update (uint16_t __crc, uint8_t __data)
{
    uint16_t __ret;

    __asm__ __volatile__ (
        "eor    %A0,%1"          " "

        "mov    __tmp_reg__,%A0" " "
        "swap   %A0"             " "
        "andi   %A0,0xf0"        " "
        "eor    %A0,__tmp_reg__" " "

        "mov    __tmp_reg__,%B0" " "

        "mov    %B0,%A0"         " "

        "swap   %A0"             " "
        "andi   %A0,0x0f"        " "
        "eor    __tmp_reg__,%A0" " "

        "lsr    %A0"             " "
        "eor    %B0,%A0"         " "

        "eor    %A0,%B0"         " "
        "lsl    %A0"             " "
        "lsl    %A0"             " "
        "lsl    %A0"             " "
        "eor    %A0,__tmp_reg__"

        : "=d" (__ret)
        : "r" (__data), "0" (__crc)
        : "r0"
    );
    return __ret;
}

/** ingroup util_crc
    Optimized Dallas (now Maxim) iButton 8-bit CRC calculation.

    Polynomial: x^8 + x^5 + x^4 + 1 (0x8C)<br>
    Initial value: 0x0

    See http://www.maxim-ic.com/appnotes.cfm/appnote_number/27

    The following is the equivalent functionality written in C.

    code
    uint8_t
    _crc_ibutton_update(uint8_t crc, uint8_t data)
    {
        uint8_t i;

        crc = crc ^ data;
        for (i = 0; i < 8; i++)
        {
            if (crc & 0x01)
                crc = (crc >> 1) ^ 0x8C;
            else
                crc >>= 1;
        }

        return crc;
    }
    endcode
*/

static __inline__ uint8_t
_crc_ibutton_update(uint8_t __crc, uint8_t __data)
{
        uint8_t __i, __pattern;
        __asm__ __volatile__ (
                "        eor        %0, %4" " "
                "        ldi        %1, 8" " "
                "        ldi        %2, 0x8C" " "
                "1:        bst        %0, 0" " "
                "        lsr        %0" " "
                "        brtc        2f" " "
                "        eor        %0, %2" " "
                "2:        dec        %1" " "
                "        brne        1b" " "
                : "=r" (__crc), "=d" (__i), "=d" (__pattern)
                : "0" (__crc), "r" (__data));
        return __crc;
}

#endif /* _UTIL_CRC16_H_ */

看看AVRGCC的CRC头文件
hisun
2楼-- · 2020-02-02 03:47
因为自己的愚笨还不会CRC这样的方法,所以用了上面的工具想尝试谁知道几个工具用同一种方法算出来的结果都不一样,现在看CRC方法还是没看明白。
非常感谢楼上。
dr2001
3楼-- · 2020-02-02 06:52
 精彩回答 2  元偷偷看……
dlmaowf
4楼-- · 2020-02-02 08:58
CRC我也一直没搞懂,也找了很多资料,最后根据网上的一个CRC-16的校验方法,用Fx3G的PLC写出的程序,校验是正确的。现在把这个计算方法贴出来,你研究一下呢


CRC-16校验码计算方法:
常用查表法和计算法。计算方法一般都是:
(1)、预置1个16位的寄存器为十六进制FFFF(即全为1),称此寄存器为CRC寄存器;
(2)、把第一个8位二进制数据(既通讯信息帧的第一个字节)与16位的CRC寄存器的低
       8位相异或,把结果放于CRC寄存器,高八位数据不变;
(3)、把CRC寄存器的内容右移一位(朝低位)用0填补最高位,并检查右移后的移出位;
(4)、如果移出位为0:重复第3步(再次右移一位);如果移出位为1,CRC寄存器与多
    项式A001(1010 0000 0000 0001)进行异或;
(5)、重复步骤3和4,直到右移8次,这样整个8位数据全部进行了处理;
(6)、重复步骤2到步骤5,进行通讯信息帧下一个字节的处理;
(7)、将该通讯信息帧所有字节按上述步骤计算完成后,得到的16位CRC寄存器的高、低
       字节进行交换;
(8)、最后得到的CRC寄存器内容即为:CRC码。
以上计算步骤中的多项式A001是8005按位颠倒后的结果。
查表法是将移位异或的计算结果做成了一个表,就是将0~256放入一个长度为16位的寄存器中的低八位,高八位填充0,然后将该寄存器与多项式0XA001按照上述3、4步骤,直到八位全部移出,最后寄存器中的值就是表格中的数据,高八位、低八位分别单独一个表。
dr2001
5楼-- · 2020-02-02 11:32
dlmaowf 发表于 2013-1-7 09:04
CRC我也一直没搞懂,也找了很多资料,最后根据网上的一个CRC-16的校验方法,用Fx3G的PLC写出的程序,校验是 ...

参考我上边的回复。

你提到的算法是Modbus用的16Bit CRC。
width=16  poly=0x8005  init=0xffff  refin=true  refout=true  xorout=0x0000  check=0x4b37  name="MODBUS"

实际应用中有很多16Bit的CRC,各不相同。
dlmaowf
6楼-- · 2020-02-02 16:13
楼上高人,确实是MODBUS的CRC校验。谢谢,我好好研究一下

一周热门 更多>