基于赛灵思Spartan-3E的片上系统无线保密通信终端设计

2020-02-23 10:50发布

利用软件实施加密算法已经成为实时安全通信系统的重要瓶颈。标准的商品化CPU和DSP无法跟上数据加密算法的计算速度要求。此外,CPU和DSP需要完成太多的其他任务。基于FPGA高度优化的可编程的硬件安全性解决方案提供了并行处理能力,并且可以达到所要求的加密处理性能基准[1].然而如果仅使用FPGA可编程VHDL来实现的话,系统就不够灵活,升级困难,况且实现起来有很大的难度,本系统以AES加密算法为例,使用Xilinx SPARTAN 3E为开发平台,以xilinx的嵌入式软核microblaze为主控制器,调用FPGA的硬件VHDL编程实现的AES加解密和控制CC2420来实现高速有效的数据通信。系统设计思想  本设计使用硬件描述语言VHDL在FPGA数字逻辑层面上实现AES加解密,为了系统的扩展性和构建良好的人机交互,设计通过PS/2键盘输入加密密钥,并将其显示在LCD上。在软核MicroBlaze上,通过SPI总线读写FIFO和RAM控制射频芯片CC2420,使系统具有信道选择、地址识别、自动CRC校验功能,使系统更加安全、通信误码率更低。
友情提示: 此问题已得到解决,问题已经关闭,关闭后问题禁止继续编辑,回答。
该问题目前已经被作者或者管理员关闭, 无法添加新回复
11条回答
RaiseCom
1楼-- · 2020-02-23 15:36
数据帧结构设计  为了更好的提高本系统数据的传输率,在官方zigbee的数据帧格式基础上做了修改。采用如表5-2所示的数据帧格式。数据帧发送时,CC2420自动在数据包的开始处加上前导码和帧起始分隔符在数据包末尾加CRC检验。

表1 数据帧结构
  数据可靠传输  为了确保数据不出错和不丢失,本设计采用了CRC校验、超时重传、返回ACK和NOACK等措施来确保数据的不出错和丢失,  系统模块构成  加密端通过串口和网口从发送段接收数据,当接收够16字节(128bit),或不足时能自动补零成128bit后送给硬件AES加密模块。在软核Microblaze的控制下通过VHDL编程的AES加密后将数据进行组帧打包,通过软核对CC2420的寄存器的读写将数据通过无线发送端CC2420发送出去,同时等待发送段确认。接收端在接收到数据以后,从数据包中将数据提取,进行快速AES解密,解密完成后进行CRC校验,如果校验正确则向源地址发送ACK确认。将正确数据送出,如果校验失败,则返回NOACK。为了确保安全,AES加解密算法需要的密钥key由键盘输入和修改,同时可以在LCD上显示出来。必须保证两端key相同才能保证正常通信。

图1 系统总体控制数据流图
 
  AES加解密模块
RaiseCom
2楼-- · 2020-02-23 17:43
 精彩回答 2  元偷偷看……
RaiseCom
3楼-- · 2020-02-23 18:51
3.3.1 软核MicroBlaze简介  MicroBlaze 是一款由xilinx公司开发的嵌入式处理器软核,其采用RISC(Reduced Instruction Set Computer)优化架构。它符合IBM CoreConnect标准,能够与PPC405系统无缝连接[3]。MicroBlaze是一个非常简化却具有较高性能的软核,在Spartan3E系列FPGA中它只占400个Slice,相当于10万门FPGA容量的1/3。其为哈佛结构,32位地址总线,独立的指令和数据缓存,并且有独立的数据和指令总线连接到IBM的PLB总线,使得它能很容易和其它外设IP核一起完成整体功能。支持SPI、I2C、PCI、CAN总线,支持重置、硬件异常、中断、用户异常、暂停等机制,可配置UART、GPIO等接口。  3.3.2 microblaze的控制流程

图3 microblaze的控制流程

  3.3.3 microblaze的控制流程主程序  main () {  Initial()//初始化系统;  CmdSend()//上位机命令输入;  DataRev()//数据接收;  AESEny()//数据加密;  DataPackage()数据打包;  CC2420Sen()加密数据发送;  Return success; }  结语  本系统将软件加解密(在50M的频率下使用软件来进行加解密)与硬件加解密时间做了对比:如表3所示。

表3 软件和硬件加密对比

表4 AES加密占用FPGA资源统计表
RaiseCom
4楼-- · 2020-02-23 23:48
该方案充分有效的利用了Spartan 3E的资源,尤其为可编程逻辑和RAM的利用。其中AES加解密中的乘法运算均由LUT查找表来实现,用空间换取时间,获得了很高的算法速度。在AES算法测试时我们发现80%的AES加解密时间都用于密钥扩展算法中,如果能再进一步把算法优化,比如做成流水线的算法模式的话,加解密时间又能减少近20%,即由现在的6.74us减少到略大于5.39us,效率又可以增加很多。  参考文献:  [1]AES算法FPGA实现分析,唐金艺,[M] 海军计算技术研究所  [2]唐明,张焕国,刘树渡等 AES的高性能硬件设计与研究 [M] 武汉大学计算机学院  [3]赵峰 马迪民 孙伟等 FPGA上的嵌入式设计[M] 2008.4  [4]佟玉伟 陆浪如 FPGA先进加密算法 (AES) 的并行实现 [M] 交通与计算机 2002.6
GoldSunMonkey
5楼-- · 2020-02-24 05:32
感谢分享。
gaochy1126
6楼-- · 2020-02-24 08:14
楼主好厉害,哈哈

一周热门 更多>