专家
公告
财富商城
电子网
旗下网站
首页
问题库
专栏
标签库
话题
专家
NEW
门户
发布
提问题
发文章
电路设计
电路精选:如何分析驱动电源与外围电路
2019-07-16 08:01
发布
×
打开微信“扫一扫”,打开网页后点击屏幕右上角分享按钮
站内问答
/
电路设计
7150
6
1565
主要针对UC3844驱动
电源
与外围
电路
详解,包括主电路、外围电路、电流反馈电路、电压反馈电路;
友情提示:
此问题已得到解决,问题已经关闭,关闭后问题禁止继续编辑,回答。
该问题目前已经被作者或者管理员关闭, 无法添加新回复
6条回答
好名字
1楼-- · 2019-07-16 13:53
主电路
图1是所设计电源的原理图,主电路采用单端反激式变换电路,220 V交流输入电压经桥式整流、电容滤波变为直流后,供给单端反激式变换电路,并通过电阻R1、C2为UC3844提供初始工作电压。为提高电源的开关频率,采用功率MOSFET作为功率开关管,在UC3844的控制下,将能量传递到输出侧。为抑制电压尖峰,在高频变压器原边设置了RCD缓冲电路。
加载中...
一转十年
2楼-- · 2019-07-16 17:06
精彩回答 2 元偷偷看……
加载中...
欲望都市
3楼-- · 2019-07-16 18:21
电流反馈电路设计
UC3844采用的是峰值电流控制模式,脚3是电流比较器同相输入端,接电流取样信号输入,即电流内环,由R3,Rf以及脚3组成。如图2所示,从脚3引入的电流反馈信号与脚1的电压误差信号比较,产生一个PWM(脉宽调制)波,由于电流比较器输入端设置了1V的电流阈值,当电流过大而使电阻R3上的电压超过1 V(即脚3电平大于1V)时,将关断PWM脉冲,反之,则保持此脉冲。由于电阻R3检测出的是峰值电流,因此它可以精确地限制最大输出电流,被检测的峰值电流为imax=1/R3。这里上端采样电阻Rf取为1kΩ),下端电流检测电阻R3,取为0.55Ω。滤波电容取为470pF/1.2V的电解电容。
加载中...
靓仔峰
4楼-- · 2019-07-16 19:16
电压反馈电路设计
采用三端可控基准源TL431反馈误差电压,并将误差电压放大,驱动线性光耦PC817的原边发光二极管,而处在电源高压端的光耦副边三极管得到反馈电压,输入到UC3844的内部误差放大器(脚1和脚2),进而调整开关管的开通、关断时间。TL431的参考端(REF)和阳极(ANODE)间是稳定的2.5V基准电压,它将取样电阻上的电压稳在2.5V。当输出电压增大,经R10,R11分压后得到的取样电压(即R-A间的电压)大于2.5V时,流过TL431的电流增大,其阴极电压下降,光耦原边二极管发光,传递到副边三极管,进而使得开关管的导通时间减少,从而降低输出电压。
加载中...
李春明
5楼-- · 2019-07-17 00:20
这个线路非常经典 楼主可以借鉴成品原理图
加载中...
李生0201
6楼-- · 2019-07-17 02:53
电源高压端的光耦副边三极管得到反馈电压
加载中...
一周热门
更多
>
相关问题
如何打开.DDB后缀的文件
2 个回答
关于AD20 使用出现GPU设备暂停提示
1 个回答
[求助]什么是振荡器?
3 个回答
武汉大学电子科学与技术系2009年工程硕士研究生(集成电路工程和电子与通信工程)招
1 个回答
有做激光测距或相关产品的同行请加入这个群,交流一下技术经验
4 个回答
[推荐]国家制定并执行的电路术语与技术质量标准大全。
1 个回答
Sequential Logic Design principles--时序逻辑设计原则
15 个回答
一个PNP三极管的问题
3 个回答
相关文章
DXP,AD不用新建PCB完美解决 Unknown Pin 和Failed to add class
0个评论
protel Altium Designer的使用总结:覆铜 打印 设置 netlable 快捷键等
0个评论
0805,0603,1206这些封装的名字是什么来的
0个评论
这些机房布线规范你都知道吗
0个评论
AD18集成库无法使用解决办法
0个评论
PCB设计中专业英译术语之综合词汇(基础介绍)
0个评论
PCB设计中的电源信号完整性的考虑
0个评论
PCB-从零开始
0个评论
×
关闭
采纳回答
向帮助了您的网友说句感谢的话吧!
非常感谢!
确 认
×
关闭
编辑标签
最多设置5个标签!
电路设计
保存
关闭
×
关闭
举报内容
检举类型
检举内容
检举用户
检举原因
广告推广
恶意灌水
回答内容与提问无关
抄袭答案
其他
检举说明(必填)
提交
关闭
×
关闭
您已邀请
15
人回答
查看邀请
擅长该话题的人
回答过该话题的人
我关注的人
图1是所设计电源的原理图,主电路采用单端反激式变换电路,220 V交流输入电压经桥式整流、电容滤波变为直流后,供给单端反激式变换电路,并通过电阻R1、C2为UC3844提供初始工作电压。为提高电源的开关频率,采用功率MOSFET作为功率开关管,在UC3844的控制下,将能量传递到输出侧。为抑制电压尖峰,在高频变压器原边设置了RCD缓冲电路。
UC3844采用的是峰值电流控制模式,脚3是电流比较器同相输入端,接电流取样信号输入,即电流内环,由R3,Rf以及脚3组成。如图2所示,从脚3引入的电流反馈信号与脚1的电压误差信号比较,产生一个PWM(脉宽调制)波,由于电流比较器输入端设置了1V的电流阈值,当电流过大而使电阻R3上的电压超过1 V(即脚3电平大于1V)时,将关断PWM脉冲,反之,则保持此脉冲。由于电阻R3检测出的是峰值电流,因此它可以精确地限制最大输出电流,被检测的峰值电流为imax=1/R3。这里上端采样电阻Rf取为1kΩ),下端电流检测电阻R3,取为0.55Ω。滤波电容取为470pF/1.2V的电解电容。
采用三端可控基准源TL431反馈误差电压,并将误差电压放大,驱动线性光耦PC817的原边发光二极管,而处在电源高压端的光耦副边三极管得到反馈电压,输入到UC3844的内部误差放大器(脚1和脚2),进而调整开关管的开通、关断时间。TL431的参考端(REF)和阳极(ANODE)间是稳定的2.5V基准电压,它将取样电阻上的电压稳在2.5V。当输出电压增大,经R10,R11分压后得到的取样电压(即R-A间的电压)大于2.5V时,流过TL431的电流增大,其阴极电压下降,光耦原边二极管发光,传递到副边三极管,进而使得开关管的导通时间减少,从而降低输出电压。
一周热门 更多>