专家
公告
财富商城
电子网
旗下网站
首页
问题库
专栏
标签库
话题
专家
NEW
门户
发布
提问题
发文章
电路设计
有源钳位吸收器电路及其数字实现方式有哪些难点?
2019-07-16 08:38
发布
×
打开微信“扫一扫”,打开网页后点击屏幕右上角分享按钮
站内问答
/
电路设计
8486
6
921
随着MOSFET击穿电压额定值的增大,导通电阻也会增大。在这样场景中如何消除同步整流器上的电压尖峰和振铃,另外有源-钳位方案优势有哪些?
友情提示:
此问题已得到解决,问题已经关闭,关闭后问题禁止继续编辑,回答。
该问题目前已经被作者或者管理员关闭, 无法添加新回复
6条回答
靓仔峰
1楼-- · 2019-07-16 11:11
吸收器电路可以避免电压偏移,特别是能消除MOSFET中寄生二极管的反向恢复损耗,还具有多种其他优势。转换器(仅副边)功率级示意图如图1所示。
图1. 功率转换器副边(图中所示为有源钳位)
图1展示的是一款隔离式DC-DC转换器的副边。副边由同步整流构成,同步整流表现为连接变压器的H-桥。另外还有输出滤波器电感(LOUT)和输出滤波器电容(COUT)。有源钳位开关是一个P沟道MOSFET,用于转换栅极信号电平的栅极驱动由一个电容和一个二极管构成。
加载中...
十个名字V
2楼-- · 2019-07-16 13:33
高频等效电路
在高频视图中,大电感和大电容分别处于开路和短路状态,电路分析中只使用寄生和谐振电感及电容。利用这种方法可以简化电路,以便分析交流电流。该方法特别适用于谐振拓扑结构和使用吸收器的场合,因为在缓冲周期中,高频电流会选择阻抗最低的路径。
电路的交流视图如图2所示。输出滤波电感和电容分别处于开路和短路状态。在电路中,MOSFET的输出电容和漏电电感保持原样。重点是转换器的副边,因为原边电压源已短路并且对分析无用。
图2. (左)功率转换器副边AC视图(图中所示为有源钳位)(右)简化的AC视图。
加载中...
adcmvp
3楼-- · 2019-07-16 13:43
同步FET有源钳位电路的工作原理
在分析中,我们假设,吸收器电容足够大,能维持电压恒定不变。在续流间隙(在图3中,SR1和SR2均开启),四个副边开关(MOSFET)全部开启。受有限上升和下降时间以及栅极驱动信号传播延迟变化的影响,同步整流器信号之间始终存在较短的死区时间。在该死区时间期间,MOSFET的寄生二极管会导通以续流。其后是下一半开关周期,此时,原边MOSFET的另一个引脚启动。这会导致变压器绕组上的极性发生变化,同时关闭同步整流器体二极管。然而,只要反向恢复电荷(Qrr)未耗尽,同步MOSFET的寄生二极管就不会关闭。方向如图2所示。该Qrr被视为作为前沿尖峰从变压器反映到原边的多余电流。这还会增大同步MOSFET漏极上的电压尖峰。反向恢复电荷的大小由下式计算得到:
图3
图4a. trr间隔捕获反向恢复能量期间的工作情况
图4b. 负载中释放的能量
漏电电感和走线电感(极性如图2所示)导致的电压尖峰由有源钳位吸收器吸收。有源吸收器开关可以在寄生二极管开启后在ZVS时打开。然而,当有源钳位吸收器开启时,吸收器电容会吸收反向恢复电流并把捕获的能量重新注入副桥和负载中。由于通过吸收器电容的净电流为零,所以只要转换器工作于稳态下,吸收器就会维持电荷平衡。
加载中...
乔伊斯e
4楼-- · 2019-07-16 15:20
设计指南
1. 估算漏电电感
让转换器在无吸收器的条件下工作,测量同步MOSFET漏极上振铃电压尖峰的谐振频率和周期(f1)。另外,测量原边电流波形上的前沿尖峰(应等于trr)。要估算漏电电感,要使电容的已知值(C2)至少比MOSFET漏极/源极电容大一个数量级。用下式测量振铃频率(f2),计算电容(COSS)和漏电(LLK)电感:
2. 选择有源钳位吸收器电容
选择一个输出电容至少为同步MOSFET输出电容10至100倍的吸收器电容。这是因为有源吸收器开关会有一条低阻抗路径。然而,吸收器电容的选择必须做到:
其中,Ts为开关周期。
在下列最小延迟条件下打开有源钳位吸收器:
这两项为驱动器的传播延迟和原边MOSFET的驱动信号上升时间。这个时序非常重要,因为必须捕获MOSFET体二极管的全部反向恢复能量。该时间取决于同步MOSFET体二极管的反向恢复特性(Qrr、trr、Irr),可能随器件上的温度、负载电流和反向电压等因素而变化。延迟时间和吸收器导通时间可以用本文所述方法精确设置以针对不同的开关特性进行优化。
确定钳位电容值的另一种方法是使用以下公式。该公式基于谐振周期,在此期间,将漏电电能释放到钳位电容中。
该值的范围为:
为了避免在第1点上观察到过多的振铃,导通时间应不超过一个或两个谐振周期,否则,会出现过多的连续振铃。或者,吸收器的导通时间可以取上面第1点中观察到的前沿尖峰的导通时间的近似值(如trr)。过多的导通时间只是会导致能量再谐振几个周期,可以在原边电流波形中看到这一点(图8和图9)。
3. 选择吸收器开关
(1)的一个简化版本是使用MOSFET数据手册中的最差条件限值。以下公式更加详细地展现了电容中电流的情况:
使用因子2是因为考虑的只是半个开关周期,对于全桥或半桥拓扑结构,该过程发生两次。另外,在图1中,由于两个开关关闭,所以反向恢复电荷会增加一倍。因此,总电流为:
其中,在全桥配置下,C为2;在中心抽头配置下,C为1;N为并联的MOSFET数目。这是通过有源吸收器开关的平均电流。
加载中...
ggfx
5楼-- · 2019-07-16 20:24
精彩回答 2 元偷偷看……
加载中...
随行者011011
6楼-- · 2019-07-17 00:26
半桥拓扑结构的实验结果
对半桥拓扑结构进行了额外的实验验证,额定输入为48 V,额定输出为9 V、200 W,开关频率为180 kHz。
图14. 有源钳位吸收器禁用
红线:SR1漏极,5 V/div
蓝线:SR2漏极;5 V/div
绿线:吸收器PWM,5 V/div
图15. 有源钳位吸收器使能
红线:SR1漏极,5 V/div
蓝线:SR2漏极;5 V/div
绿线:吸收器PWM,5 V/div
图16. 有源钳位吸收器条件下软启动期间的SR漏极波形
黄线:吸收器FET栅极-源极电压,5 V/div
红线:SR1漏极,10 V/div
蓝线:SR2漏极,10 V/div
绿线:输出电压,2 V/div
图17. 有源钳位吸收器条件下软启动期间的SR漏极波形
黄线:吸收器FET栅极-源极电压,5 V/div
红线:SR1漏极,10 V/div
蓝线:SR2漏极,10 V/div
绿线:输出电压,2 V/div
图18. 短路测试过程中的SR漏极电压
黄线:负载电流,5 A/div
红线:SR1漏极,10 V/div
蓝线:SR2漏极,10 V/div
绿线:输出电压,2 V/div
布局考虑
图8所示为上述半桥拓扑结构的布局。关键点是通过缩短环路或将其限制在较窄区域,减小钳位环路的寄生电感。否则会降低钳位的有效性,并在钳位周期内导致高频振铃。
图19. 有源钳位吸收器布局
加载中...
一周热门
更多
>
相关问题
如何打开.DDB后缀的文件
2 个回答
关于AD20 使用出现GPU设备暂停提示
1 个回答
[求助]什么是振荡器?
3 个回答
武汉大学电子科学与技术系2009年工程硕士研究生(集成电路工程和电子与通信工程)招
1 个回答
有做激光测距或相关产品的同行请加入这个群,交流一下技术经验
4 个回答
[推荐]国家制定并执行的电路术语与技术质量标准大全。
1 个回答
Sequential Logic Design principles--时序逻辑设计原则
15 个回答
一个PNP三极管的问题
3 个回答
相关文章
DXP,AD不用新建PCB完美解决 Unknown Pin 和Failed to add class
0个评论
protel Altium Designer的使用总结:覆铜 打印 设置 netlable 快捷键等
0个评论
0805,0603,1206这些封装的名字是什么来的
0个评论
这些机房布线规范你都知道吗
0个评论
AD18集成库无法使用解决办法
0个评论
PCB设计中专业英译术语之综合词汇(基础介绍)
0个评论
PCB设计中的电源信号完整性的考虑
0个评论
PCB-从零开始
0个评论
×
关闭
采纳回答
向帮助了您的网友说句感谢的话吧!
非常感谢!
确 认
×
关闭
编辑标签
最多设置5个标签!
电路设计
保存
关闭
×
关闭
举报内容
检举类型
检举内容
检举用户
检举原因
广告推广
恶意灌水
回答内容与提问无关
抄袭答案
其他
检举说明(必填)
提交
关闭
×
关闭
您已邀请
15
人回答
查看邀请
擅长该话题的人
回答过该话题的人
我关注的人
图1. 功率转换器副边(图中所示为有源钳位)
图1展示的是一款隔离式DC-DC转换器的副边。副边由同步整流构成,同步整流表现为连接变压器的H-桥。另外还有输出滤波器电感(LOUT)和输出滤波器电容(COUT)。有源钳位开关是一个P沟道MOSFET,用于转换栅极信号电平的栅极驱动由一个电容和一个二极管构成。
在高频视图中,大电感和大电容分别处于开路和短路状态,电路分析中只使用寄生和谐振电感及电容。利用这种方法可以简化电路,以便分析交流电流。该方法特别适用于谐振拓扑结构和使用吸收器的场合,因为在缓冲周期中,高频电流会选择阻抗最低的路径。
电路的交流视图如图2所示。输出滤波电感和电容分别处于开路和短路状态。在电路中,MOSFET的输出电容和漏电电感保持原样。重点是转换器的副边,因为原边电压源已短路并且对分析无用。
图2. (左)功率转换器副边AC视图(图中所示为有源钳位)(右)简化的AC视图。
在分析中,我们假设,吸收器电容足够大,能维持电压恒定不变。在续流间隙(在图3中,SR1和SR2均开启),四个副边开关(MOSFET)全部开启。受有限上升和下降时间以及栅极驱动信号传播延迟变化的影响,同步整流器信号之间始终存在较短的死区时间。在该死区时间期间,MOSFET的寄生二极管会导通以续流。其后是下一半开关周期,此时,原边MOSFET的另一个引脚启动。这会导致变压器绕组上的极性发生变化,同时关闭同步整流器体二极管。然而,只要反向恢复电荷(Qrr)未耗尽,同步MOSFET的寄生二极管就不会关闭。方向如图2所示。该Qrr被视为作为前沿尖峰从变压器反映到原边的多余电流。这还会增大同步MOSFET漏极上的电压尖峰。反向恢复电荷的大小由下式计算得到:
图3
图4a. trr间隔捕获反向恢复能量期间的工作情况
图4b. 负载中释放的能量
漏电电感和走线电感(极性如图2所示)导致的电压尖峰由有源钳位吸收器吸收。有源吸收器开关可以在寄生二极管开启后在ZVS时打开。然而,当有源钳位吸收器开启时,吸收器电容会吸收反向恢复电流并把捕获的能量重新注入副桥和负载中。由于通过吸收器电容的净电流为零,所以只要转换器工作于稳态下,吸收器就会维持电荷平衡。
1. 估算漏电电感
让转换器在无吸收器的条件下工作,测量同步MOSFET漏极上振铃电压尖峰的谐振频率和周期(f1)。另外,测量原边电流波形上的前沿尖峰(应等于trr)。要估算漏电电感,要使电容的已知值(C2)至少比MOSFET漏极/源极电容大一个数量级。用下式测量振铃频率(f2),计算电容(COSS)和漏电(LLK)电感:
2. 选择有源钳位吸收器电容
选择一个输出电容至少为同步MOSFET输出电容10至100倍的吸收器电容。这是因为有源吸收器开关会有一条低阻抗路径。然而,吸收器电容的选择必须做到:
其中,Ts为开关周期。
在下列最小延迟条件下打开有源钳位吸收器:
这两项为驱动器的传播延迟和原边MOSFET的驱动信号上升时间。这个时序非常重要,因为必须捕获MOSFET体二极管的全部反向恢复能量。该时间取决于同步MOSFET体二极管的反向恢复特性(Qrr、trr、Irr),可能随器件上的温度、负载电流和反向电压等因素而变化。延迟时间和吸收器导通时间可以用本文所述方法精确设置以针对不同的开关特性进行优化。
确定钳位电容值的另一种方法是使用以下公式。该公式基于谐振周期,在此期间,将漏电电能释放到钳位电容中。
该值的范围为:
为了避免在第1点上观察到过多的振铃,导通时间应不超过一个或两个谐振周期,否则,会出现过多的连续振铃。或者,吸收器的导通时间可以取上面第1点中观察到的前沿尖峰的导通时间的近似值(如trr)。过多的导通时间只是会导致能量再谐振几个周期,可以在原边电流波形中看到这一点(图8和图9)。
3. 选择吸收器开关
(1)的一个简化版本是使用MOSFET数据手册中的最差条件限值。以下公式更加详细地展现了电容中电流的情况:
使用因子2是因为考虑的只是半个开关周期,对于全桥或半桥拓扑结构,该过程发生两次。另外,在图1中,由于两个开关关闭,所以反向恢复电荷会增加一倍。因此,总电流为:
其中,在全桥配置下,C为2;在中心抽头配置下,C为1;N为并联的MOSFET数目。这是通过有源吸收器开关的平均电流。
对半桥拓扑结构进行了额外的实验验证,额定输入为48 V,额定输出为9 V、200 W,开关频率为180 kHz。
图14. 有源钳位吸收器禁用
红线:SR1漏极,5 V/div
蓝线:SR2漏极;5 V/div
绿线:吸收器PWM,5 V/div
图15. 有源钳位吸收器使能
红线:SR1漏极,5 V/div
蓝线:SR2漏极;5 V/div
绿线:吸收器PWM,5 V/div
图16. 有源钳位吸收器条件下软启动期间的SR漏极波形
黄线:吸收器FET栅极-源极电压,5 V/div
红线:SR1漏极,10 V/div
蓝线:SR2漏极,10 V/div
绿线:输出电压,2 V/div
图17. 有源钳位吸收器条件下软启动期间的SR漏极波形
黄线:吸收器FET栅极-源极电压,5 V/div
红线:SR1漏极,10 V/div
蓝线:SR2漏极,10 V/div
绿线:输出电压,2 V/div
图18. 短路测试过程中的SR漏极电压
黄线:负载电流,5 A/div
红线:SR1漏极,10 V/div
蓝线:SR2漏极,10 V/div
绿线:输出电压,2 V/div
布局考虑
图8所示为上述半桥拓扑结构的布局。关键点是通过缩短环路或将其限制在较窄区域,减小钳位环路的寄生电感。否则会降低钳位的有效性,并在钳位周期内导致高频振铃。
图19. 有源钳位吸收器布局
一周热门 更多>