如何选择电源模块有利于减少设计布局错误同时满足EMI特性方面?

2019-07-16 13:20发布

越来越多的应用必须通过EMI标准,制造商才获得商业转售批准。开关电源意味着器件内部有电子开关,EMI可通过它产生辐射。
如何选择电源模块有利于减少设计布局错误同时满足EMI特性方面?
友情提示: 此问题已得到解决,问题已经关闭,关闭后问题禁止继续编辑,回答。
该问题目前已经被作者或者管理员关闭, 无法添加新回复
4条回答
LEON1985
1楼-- · 2019-07-16 19:10

开关电源中EMI的来源以及降低EMI的方法或技术。电源模块(控制器、高侧和低侧FET及电感器封装为一体)可以帮助降低EMI。

开关电源中EMI的来源

首先,必须尊重物理定律。根据麦克斯韦方程组,交流电可产生电磁场。每个电导体中均会出现这种现象,其自身带有一些可以形成振荡电路的电容和电感。该振荡电路以特定频率(f=1/(2*π*sqrt(LC)))将电磁能辐射到空间中。该电路充当电磁能的发射器,但也可以接收电磁能并充当接收器。天线设计是为了最大化传输或接收能量。

但并非每个应用都应该像天线一样,而且这种设计可能会产生负面影响。例如,开关降压电源设计用于将较高的电压转换为较低的电压,但它们同时也充当了(有害的)电磁波发射器,可能干扰其他应用,例如干扰AM频段。这种效应称为EMI。

为了确保功能正常运行,最大限度地减少EMI源非常重要。国际无线电干扰特别委员会(CISPR)定义了各种标准,如作为汽车电气应用基准的CISPR 25,以及针对信息技术设备的CISPR 22。

如何降低电源设计的EMI辐射呢?一种方法是用金属完全屏蔽开关电源。但在大多数应用中,由于成本和空间的原因,这种方法无法实现。一种更好的方法是减少和优化EMI源。许多文献已经详细讨论了这一专题;本文推荐了两种方式。

让我们回顾一下开关电源中EMI的主要来源,以及为什么电源模块可以帮助您轻松降低EMI。

减小布局中的电流环路

顾名思义,开关电源是用来进行转换的。它们的作用是以几百千赫到几兆赫的频率打开和关闭输入电压。这就导致了快速电流转换(dI/dt)和快速电压转换(dV/dt)。根据麦克斯韦方程组,交流电流和电压产生交变电磁场。这些电磁场从其原点径向扩散,它们的强度随距离而降低。

图1.来自开关电源的EMI会对负载和主电源产生影响

图2.在输入端、开关和输入电容器之间形成临界电流环路。

图3.减小环路区域有助于降低EMI

磁场和电场会干扰应用的导电部件(例如,印刷电路板[PCB]上的铜迹线,就像天线一样)并在线路上产生额外的噪声,这样又会导致发生EMI(见图1)。实际上几瓦功率的转换就会扩大EMI的辐射范围。

4.引脚排列有助于减小环路面积。左图:优化的引脚排列;右图:非优化布局,几乎无法形成良好的布局。

辐射的电磁能与其流过的电流量(I)和环路面积(A)成正比。减小交流电流和电压环路的面积有助于降低EMI(见图2和图3)。

着眼于引脚排列(见图4)可以帮助您通过减小高dI/dt环路面积来更好地设计良好布局。例如,开关节点能够引发高电流变化(dI)和高电压转换(dV)。良好的引脚排列可以分离噪声敏感引脚和噪声引脚。开关节点和启动引脚应尽可能远离噪声敏感型反馈引脚。此外,输入引脚和接地引脚应相邻。这样便简化了PCB上的布线和输入电容器的放置。

图5显示了LMR23630 SIMPLE SWITCHER®转换器的改进评估模块(EVM)。两个输入电容器距离输入引脚约2.5厘米。之所以如此排列,是为了模拟不良布局,因为电流环路区域(图5中的红 {MOD}矩形)比数据表所要求和建议的要大。图5中的椭圆形红 {MOD}形状表示转换器和电感器之间的开关节点。IC和电感器之间的环路面积越小越好。

图5.输入引脚和输入电容器之间环路面积(红 {MOD}矩形)较大的错误布局示例。在IC和电感器之间形成第二个环路区域(椭圆形红 {MOD}形状)。

图6中的曲线图显示了LMR23630转换器的EMI辐射,其中只有VIN、GND和输入电容器之间形成的环路面积不同。良好的布局中电容器尽可能靠近输入引脚和接地引脚(环路面积尽可能地小)。而不良的布局中输入电容器距离输入引脚2.5厘米,从而形成一个较大的环路面积。

图6.LMR23630转换器输入电容布局对EMI辐射的影响。

图6中曲线图的红线表示不良布局的EMI辐射。蓝线表示采用相同EVM的良好布局的EMI辐射。修改一个环路面积会产生巨大的影响。LMR23630转换器的EMI辐射水平可降低20 dBμV/m以上。

图7.不同类型电源模块的内部组成。在这两种情况下,电感器均位于IC晶片的顶部。

因此,在采用降压转换器或降压电源模块进行设计时,如何放置输入电容器应该是首要考虑因素之一。电源模块还具有以下优点:电感器和IC之间的关键环路面积已经过优化。电感器在封装内部与集成电路连接(见图7)。这种放置方式会在封装内部形成一个较小的环路区域。因此,不必将噪声开关节点布线在印刷电路板上。

电源模块中屏蔽了其中的大多数电感器,以防止来自线圈的电磁辐射。在非常靠近电感器的地方会发生高电流电压转换,并且开关节点的一部分电磁场受到屏蔽,电感器位于引线框架的顶部(见图7)。


LEON1985
2楼-- · 2019-07-16 21:58
 精彩回答 2  元偷偷看……
LEON1985
3楼-- · 2019-07-17 00:55

保护噪声敏感节点免受噪声节点的影响

尽可能缩短噪声敏感节点,并远离噪声节点。例如,从电阻分压网络到反馈(FB)引脚的长迹线可以充当天线并捕获电磁辐射干扰的噪声(图10)。这种噪声会被引入FB引脚,致使输出端产生额外的噪声,甚至使器件不稳定。在设计开关降压调节器的布局时,将这一切都考虑在内是一个挑战。

1.降压转换器中噪声敏感节点和噪声节点的示例。

10.始终将FB引脚上的电阻分压器尽可能靠近FB引脚放置。

模块的优势在于将噪声敏感节点和噪声节点保持在最低限度,从而最大限度地减小错误布局的几率。唯一要注意的是保持FB引脚的迹线尽可能短。

结论

在开关降压转换器中有许多用来调节EMI的旋钮,但用来实现最佳方案可能还不够方便。找到最佳配置会花费大量宝贵的设计时间。电源模块早已包括FET和电感器,这就使得创建和完成具有良好EMI特性的电源设计变得简单而又快捷。使用降压模块进行设计时最关键的一点是一些外部元件的放置方式,这有助于显著提高EMI特性。

转换器和电源模块的EMI比较

前文说明了开关电源中EMI的来源以及如何降低EMI。现在,本文将通过比较转换器和使用相同集成电路(IC)的电源模块之间的测量结果,来演示模块如何帮助减轻EMI辐射。两者均来自TI的SIMPLE SWITCHER产品线,转换器为LMR23630,电源模块为LMZM33603,采用LMR23630 IC。通过对两个器件的EVM做部分更改,以获得相同的BOM数,因此结果仅取决于所选部件(转换器或电源模块)和布局。两种EVM均具有良好的优化布局。之后,将电容器放置在远离输入引脚的位置,就生成了不良布局。

LMR23630转换器的性能

SHAPE  * MERGEFORMAT

转换器 - LMR 23630

良好布局

电容器靠近

电容器远离

无电容器

频率[MHz]

良好布局

小电容器靠近

小电容器远离

无小电容器

电平[dBµV/m]

CISPR 22 A3M级


11.具有不同输入电容布局的LMR23630转换器的EMI辐射

图11显示了不同设计布局的四种不同EMI频谱。设计布局从优至劣排列(类似于图5,只是把各步骤分开)。第一次测量(良好布局/蓝线)时,未对EVM的布局做出更改(良好布局中所有的输入电容器都非常靠近输入引脚)。第二次测量(小电容器靠近/红线)时,两个4.7μF电容器均放置在距输入引脚2.5厘米处。0.22μF的小电容器非常靠近输入引脚。在第三(小电容器远离/绿线)和第四(无小电容器/紫线)次测量时,小电容器分别距输入引脚2.5厘米,然后完全移除。

您可以在图11中看到输入电容器的放置非常关键。将小输入电容器远离输入引脚放置或将其完全移除会违背CISPR 22 A3M级标准。将小电容器靠近输入引脚放置可以最大限度地减少高频环路面积。小电容器可滤除高频噪声,而较大电容的电容器可滤除低频噪声。

电源模块的封装中通常包含一个小输入电容器。让我们看看布局不良时电源模块的性能。

LMZM33603电源模块的性能

图12显示了电源模块的EVM布局,同样从优至劣排列。蓝线表示未更改EVM的EMI辐射。红线和绿线表示不良布局,其中一条线有两个4.7μF输入电容器,位于PCB底部下方(红线)。绿线的电容器距输入引脚约3.5厘米(图13中以红 {MOD}椭圆形突出显示)。图13中的红 {MOD}粗线还显示了更改后的EVM,以及VIN、输入电容器和接地之间形成的关键环路区域。EMI特性变差,但并不违背CISPR 22 A3M级标准。

图12.TI LMZM33603电源模块的EMI射特性

图13.TI LMZM33603电源模块的不良布局示例。

电源模块可以补救布局设计错误

图14在单个图表中对LMR23630转换器(红线)和LMZM33603电源模块(蓝线)做出了对比。两者均有类似的不良布局,所有外部输入电容器都远离输入引脚。

显然,LMZM33603电源模块的EMI辐射特性要优于LMR23630转换器。尽管两种布局均不完美,但电源模块会通过CISPR测试,而转换器无法通过测试。


图14.较TI LMR23630转换器和LMZM33603电源模块的EMI特性。


李春明
4楼-- · 2019-07-17 05:47
跟着楼主一起学习

一周热门 更多>