DSP在体系结构上与通用微处理器有很大的区别。下面是几个关键的不同点:
单周期指令:大多数DSP都拥有流水结构,它可以在一个时钟周期内执行一条语句。
快速乘法器:信号处理算法往往大量用到乘加(multiply-accumulate,MAC)运算。DSP有专用的硬件乘法器,它可以在一个时钟周期内完成MAC运算。硬件乘法器占用了DSP芯片面积的很大一部分。(与之相反,通用微处理器采用一种较慢的、迭代的乘法技术,它可以在多个时钟周期内完成一次乘法运算,但是占用了较少了硅片资源)。
多总线:DSP有分开的代码和数据总线(一般用术语“哈佛结构”表示),这样在同一个时钟周期内可以进行多次存储器访问——这是因为数据总线也往往有好几组。有了这种体系结构,DSP就可以在单个时钟周期内取出一条指令和一个或者两个(或者更多)的操作数。
地址发生器:DSP有专用的硬件地址发生单元,这样它可以支持许多信号处理算法所要求的特定数据地址模式。这包括前(后)增(减)、环状数据缓冲的模地址以及FFT的比特倒置地址。地址发生器单元与主ALU和乘法器并行工作,这就进一步增加了DSP可以在一个时钟周期内可以完成的工作量。
硬件辅助循环:信号处理算法常常需要执行紧密的指令循环。对硬件辅助循环的支持,可以让DSP高效的循环执行代码块而无需让流水线停转或者让软件来测试循环终止条件。
数据格式:除了标准的整数型格式外,DSP一般支持定点和(或)浮点数。对数据格式和精度的选择取决于应用程序所需,例如:
16位定点DSP可以满足语音信号处理和控制所需
24位和32位定点DSP可以满足高质量音频信号处理所需
32位浮点DSP可以满足图形和图像处理所需
DSP的特点:
DSP处理器采用哈佛结构和改进的哈佛结构。
哈佛结构就是将程序代码和数据的存储空间分开,各有自己的地址和数据总线。之所以采用哈佛结构,是为了并行进行指令和数据处理,从而可以大大地提高运算的速度。为了进一步提高信号处理的效率,在哈佛结构的基础上,又加以改善。使得程序代码和数据存储空间之间可以进行数据的传输,称为改善的哈佛结构。
采用流水技术。
流水技术是将各指令的各个步骤重叠起来执行。DSP处理器所采用的将程序存储空和数据存储空间的地址与数据总线分开的哈佛结构,为采用流水技术提供了很大的方便。
为了提高DSP处理器的运算速度,它们无例外地设置了硬件乘法器,以及MAC(乘并且累加)一类的指令。
DSP处理器都为DMA单独设置了完全独立的总线和控制器,这是和通用的CPU很不相同,其目的是在进行数据传输是完全不影响CPU及其相关总线的工作。
在DSP处理器中,设置了专门的数据地址发生器来产生所需的数据地址。数据地址的产生与CPU的工作是并行的,从而节省CPU的时间,提高信号的处理速度。
DSP处理器为了自身工作的需要和外部环境的协调工作。往往都设置了丰富的外设。如时钟发生器。定时器等。
定点DSP处理器和浮点DSP处理器。定点DSP中经常要考虑溢出问题,在浮点DSP基本上可以不考虑。与定点DSP处理器相比,浮点DSP处理器的速度更快,尤其是作浮点运算。在实时性要求很到的场合。往往考虑浮点DSP处理器。而浮点DSP处理器的价格比较高,开发难度更大。
一周热门 更多>