DSP编程的几个关键问题

2019-07-18 15:07发布

DSP编程的几个关键问题  DSP编程的几个关键问题  DSP芯片凭其优异的性能在高速计算领域有着巨大的应用前景。但其应用所设计的知识非常庞杂。本文以TI公司的 320C54X系列为蓝本进行提纯,所有认识都是笔者在实际工作中亲手实践所得。当程序调不通不知该从何处下手时,此文也许会有所帮助。这些关键点有些是TMS320C5409所独有而有些是与DSP所共有的。  1 McBSP (Multichannel Buffered Serial Port)串口利用DMA中的多帧(Multi-Frame)方式通信的中断处理  在实际通信应用中,一个突发之后,程序必须为下一个突发作准备。因此一般采用串口的DMA多帧方式进行发送,在中断处理程序中或停止发送或加载数据。但在串口以DMA方式传输数据时却有一些问题要讨论。首先DMA的传输同步事件应设为McBSP的传输事件即XEVT,这样一字节传输后会自动准备另一字节(McBSP的READY上升沿触发DMA传输)。中断发生时意味着一个块已传完,这时DMA的使能自动关闭,McBSP的READY将一直保持高状态。但是在下一次突发传输直接使能DMA时却启动不了传输(相信会有许多人遇到此类问题)。这是因为无法产生McBSP触发启动所需的READY上升沿。解决办法是在中断程序中先关闭McBSP的发送,使READY=0,随后在程序中发送使能DMA,再打开McBSP的发送既可。如先打开McBSP的发送后打开DMA,也是不会工作的。因为McBSP的READY已经由0变到1了,无法再产生READY上升沿。  2 关闭DMA与关闭McBSP的区别  在通信领域,为了充分利用 DSP 的片上外设资源,常常利用DMA把从串口来的数据或要发的数据放入缓冲区,再处理。对DMA而言,只要其在数据缓冲区的指针指向了中断应发生的位置,就产生中断。但此时最后一个数据只是进入了McBSP而并未真正发出去,所以在传送结束的中断程序中只能关闭DMA不能关闭McBSP。因为此时McBSP的发寄存器DXR中还有一个字没有发出。  3 McBSP串口配置的关键时序  主要是寄存器SPCR2的配置:在保持RRST、XRST、FRST各位为0的前提下,配置好其它串口控制寄存器。等待至少2个CLKR/T时钟以确保DSP内部的同步。  (1)可以向DXR装载DMA。  (2)使能GRST(GRST=1)(如果需要DSP内部产生采样时钟)。  (3)使能RRST或XRST,注意此时要保证SPCR中仅有此一位发生改变。  (4)使能FRST(FRST=1)(如果需要DSP内部产生帧同步)。  (5)等待2个R/T CLK时钟周期后,收或发端便会有效。  4 汇编语言程序中的变量  汇编语言程序中的公用变量应在文件中定义,如.def carry。汇编语言程序中使用的局部变量不需要定义,可直接声明,例如trn_ num.word 00h。如果在两个asm文件中有两个都没有定义的同名变量,则编译程序会认为他们不是同一变量。在汇编程序的开头应有 .mmregs宏语句。它一方面表示对默认定义的确认(ah,bh,trn等),另一方面可以对所用寄存器重新定义。如:    .mmregs  DMPREC .set 54h ;定义DMA优先和使能寄存器地址在54h  DMSA .set 55h  DMSDN .set 57h  DXR10 .set 23h ;定义串口1的发送寄存器地址在23h5 ST1寄存器中CPL位的影响   CPL位是编译模式控制位,它表示在相对直接寻址时采用哪种指针。当CPL=0时,使用页指针DP;当CPL=1时,使用堆栈指针SP。实际使用中二者没什么差别,但使用SP寻址的程序更易读。在程序中经常使用CPL=1。  6 指令的歧义  6.1 比较下面指令    STLM B, AR4 ;把bl内容送入寄存器AR4 (错)  STLM B, *AR4 ;把bl内容送入寄存器AR4 (对)  前者实际执行的是把bl内容送入一个系统用的缓冲区,后者也可用:  MVDM BL, AR4 ;把bl内容送入寄存器AR4 (对)  其他易导致歧义的语句还有:  LD AR5,A ;把AR5的内容送入寄存器A (错)  LDM AR5,A ;把AR5的内容送入寄存器A (对)     ANDM #0x107e,AR4 ;把#107e加到寄存器AR4 (错)  ANDM #0x107e,*AR4 ;把#107e加到寄存器AR4 (对)  仅对某些寄存器有效的指令: MVDD * AR2+, *AR3 ;把以AR2为地址的内容拷入AR3的地址中  此类指令用作数据块搬移特别有效,但仅对AR2、AR3、AR4、AR5有效。  易错语句中对程序运行危害最大的是: ST #0, *(bsp0_out_sign) ;bsp0_out_sign是一个变量名 (对)  STM #0, (bsp0_out_sign) ;此语句被编译为STM #0,PMST或STM #0,IMR (错)  这种语句会导致程序运行中的随机故障,且极难发现。  6.2 流水冲突 分析以下程序: STM to-dce-buff,AR4  LDM AR4,B  ADD A,B ;B=AR4+AL  MVDM BL,AR4 ;AR4=to-dce-buff+AL 实际上,上段程序得不到AR4=to-dce-buff+AL的结果。这是因为DSP一般采用深度为3~6级的流水结构,产生了无法解决的冲突,所以它不能被正确执行。解决的办法是在赋值和引用之间插入一条或几条其他的指令,或NOP语句即可。  7 汇编与C语言混合编程的关键问题  7.1 C程序变量与汇编程序变量的共用  为了使程序更易于接口和维护,可以在汇编程序中引用与C程序共享的变量:  .ref_to_dce_num,_to-dte_num,_to_dce_buff,_to_dte_buff 在汇编程序中引用而在C程序可直接定义的变量:  unsigned char to_dte_buff[BUFF_SIZE]; //DSP发向PC机的数据  int to_dte_num; //缓冲区中存放的有效字节数  int to_dte_store; //缓冲区的存放指针  int to_dte_read; //缓冲区的读取指针  这样经过链接就可以完成对应。  7.2 程序入口问题  在C程序中,程序的入口是main()函数。而在汇编程序中其入口由*.cmd文件中的命令决定,如:-e main_start;程序入口地址为 main _start。这样,混合汇编出来的程序得不到正确结果。因为C到ASM的汇编有默认的入口c-int00,从这开始的一段程序为C程序的运行做准备工作。这些工作包括初始化变量、设置栈指针等,相当于系统壳不能跨越。这时可在*.cmd文件中去掉语句:-e main_start。如仍想执行某些汇编程序,可以C函数的形式执行,如:  main_start(); //其中含有其他汇编程序  但前提是在汇编程序中把_main_start作为首地址,程序以rete结尾(作为可调用的函数)的程序段,并在汇编程序中引用_main_start,即.ref _main_start。  7.3 移位问题 在C语言中把变量设为char型时,它是8位的,但在DSP汇编中此变量仍被作为16位处理。所以会出现在C程序中的移位结果与汇编程序移位结果不同的问题。解决的办法是在C程序中,把移位结果再用0X00FF去“与”一下即可。 7.4 堆栈问题  在汇编程序中对堆栈的依赖很小,但在C程序中分配局部变量、变量初始化、传递函数变量、保存函数返回地址、保护临时结果功能都是靠堆栈完成。而C编译器无法检查程序运行时堆栈能否溢出。  7.5 程序跑飞问题  编译后的C程序跑飞一般是对不存在的存储区访问造成的。首先要查.MAP文件与memory map图对比,看是否超出范围。如果在有中断的程序中跑飞,应重点查在中断程序中是否对所用到的寄存器进行了压栈保护。如果在中断程序中调用了C程序,则要查汇编后的C程序中是否用到了没有被保护的寄存器并提供保护(在C程序的编译中是不对A、B等寄存器进行保护的)。  8 命令文件的编写 在编辑*.cmd文件时编译连接器默认:page 0就是ROM区,page 1就是RAM区。下列段必须放在ROM区。  .text load = PROG PAGE 0 ;程序段  .const load = data PAGE 0 ;常数段  .cinit load = data PAGE 0 ;初始化段  .switch load = data PAGE 0 ;switch指令常数表 值得注意的是尽量不要用FILL选项,一旦进行填充会使生成的.out文件增大甚至超过内部的存储空间而无法Bootload。  9 Bootload问题 一般都采用从EPROM引导,但通常很费脑筋。下面介绍一下可为54X系列DSP内部引导程序识别的EPROM存储结构,见下表:  EPROM内容地址  08AAh或10AAh  SWWSR(等待状态产生寄存器)值16  BSCR(页切换控制寄存器)值16  入口点XPC(外部存储器映射寄存器)值7  入口点PC(程序地址寄存器)值16  第一块的大小16  第一块的入口点XPC(外部存储器映射寄存器)值7  第一块的入口点PC(程序地址寄存器)值16  代码(1)16  ......  代码(N)16  最后一块的大小16  最后一块的入口点XPC(外部存储器映射寄存器)值7  最后一块的入口点PC(程序地址寄存器)值16  代码(1)16  ......  代码(N)16  0000h(标志引导表结束)  ......  ............  EPROM的启始地址(如8000h)首地址  FFFFh  -BSCR 0f800h ;设置4K为一页,页面切换时插入1个等待状态  -o cdpd.hex ;转换成cdpd.hex文件  -i ;intel格式  -boot ;把所有的程序块装入EPROM  -bootorg 8000h ;从EPROM存储器的8000h处开始写入程序内容  -memwidth 8 ;系统数据宽度转为8位,以避免生成2个文件  -romwidth 8 ;EPROM 数据宽度为8位  -e 0840h ;从0840h开始执行程序  -map wfcdpd.mxp ;生成EPROM存储器占用映射 这时生成的cdpd.hex可以直接写入EPROM。需要说明320C5409的外部RAM范围是从8000h~FFFFh,所以设首地址为8000h。但是对C54X系列而言,其转换有个BUG,即它总是不能在0XFFFF处写入从外部 EPROM 存储器装载的开始地址,只好自己填入。对本例而言在0XFFFF处写0X80,在0XFFFF处写00。
0条回答

一周热门 更多>